Math, asked by daredevilsurya84, 25 days ago

Please answer this question !

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

z = ( \sqrt{2}  -  \sqrt{ - 4} )^{2}  - 3(2 + 4i)(3 - 2i) + (1 - i)^{3}  \\

 \implies  \: z = ( \sqrt{2}  - 2i )^{2}  - 3 \{6 + 12 i - 4i - 8 {i}^{2} \}  +  \{{(1)}^{3} - 3.( {1})^{2} .i + 3.(1). {(i)}^{2}  -  {(i)}^{3} \}    \\

 \implies  \: z =  \{( \sqrt{2})^{2} +    (2i )^{2} - 2. \sqrt{2} .2i   \}  - 3 \{6 + 12 i - 4i - 8 {i}^{2} \}  +  \{{(1)}^{3} - 3.( {1})^{2} .i + 3.(1). {(i)}^{2}  -  {(i)}^{3} \}    \\

 \implies  \: z =  \{2 - 4 - 4\sqrt{2} i   \}  - 3 \{6 + 8 i + 8 \}  +  \{1 - 3i  -  3  -  i \}    \\

 \implies  \: z =   - 2 - 4\sqrt{2} i     -42 -  24 i  - 2- 4i      \\

 \implies  \: z =    - 46- (28 + 4\sqrt{2}) i        \\

So,

  \: Im(z) =  - 28 - 4 \sqrt{2}

Similar questions