Math, asked by vinodaroa77, 5 hours ago

please answer this question​

Attachments:

Answers

Answered by srishti7111
1

Answer:

for fiinding the value of x, y, z

we have to find the value of y frst

so,

we know tht, sum of all angles of triangles = 180 °

90 + 60+y = 150

y = 180-150 = 30

y = 30°

So now we have to find the value of x, z

now value of x, z

we know tht x, y, z forns linear pair

so linera pair = 180°

30+x+z = 180

180 - 30 = 150

so value of x, z = 150/2 =

75

so value of x= 75°

so value of z= 75°

Step-by-step explanation:

pls mark me brainliest

Answered by ItzBrainlyLords
1

Solving :

 \\  \large \sf \: pq \parallel  bc \\  \\  \large \sf \angle acb = 90 \degree \: ( right \:  \: angle) \\  \\  \large \sf \angle abc = 60 \degree \: (given) \\  \\  \large  \mapsto\underline{ \sf \:angle \:  \: sum \:  \: property :  } \\  \\  \large \rm \: sum  \:  \: of \:  \: interior \:  \: angles =  180\degree \\  \\ \large \tt  : \implies \angle y +  \angle b +  \angle c = 180 \degree \\  \\ \large \tt  : \implies \angle y+  60 \degree + 90 \degree = 180 \degree \\  \\ \large \tt  : \implies \angle y+  150 \degree = 180 \degree \\  \\  \large  \mapsto\underline{ \sf \:transposing \:  \: terms :  } \\  \\  \large \tt  : \implies \angle y = 180 \degree  -  150 \degree \\  \\  \large \tt  \therefore  \underline{\underline{ \angle y  = 30 \degree}} \\   \\

 \large \rm \angle \:  z = 60 \degree \: (corresponding \:  \: angles) \\  \\  \large \tt \implies \:  \angle \: z +  \angle \: y = 30 \degree + 60 \degree \\  \\  \large \tt \implies \:  \angle \: z +  \angle \: y =90 \degree \\  \\   \large\rm \mapsto \: angles \:  \: along \:  \: staright \:  \: line \\  \large \rm \:  \:  \:  \:  \:  \:  = 180 \degree\\  \\  \large \tt \implies \:   \angle \: x + \angle \: z +  \angle \: y =180 \degree \\  \\ \large \tt \implies \:   \angle \: x + 90 \degree =180 \degree \\  \\\large \tt \implies \:   \angle \: x  =  180 \degree  - 90 \degree \\  \\\large \tt  \therefore  \underline{\underline{ \angle  \: x  = 90 \degree}} \\   \\

Similar questions