Math, asked by ahgahearts, 8 days ago

Please answer this question.

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

The frequency distribution table is as follow :

\begin{gathered}\begin{gathered}\begin{gathered} \boxed{\begin{array}{|c|c|c|c|c|}\bf Class&\bf Frequency (f_i)&\bf class \: mark (x_i) & \bf d_i = (x_i - A)& \bf f_id_i\\\sf 0-50&\sf 4&\sf25 & \sf -100 & \sf -400 \\ \sf 50-100&\sf 8&\sf 75& \sf -50 & \sf -400\\\sf 100-150&\sf 16 &\sf 125 & \sf 0 & \sf 0\\\sf 150-200&\sf 13& \sf 175 & \sf 50 & \sf 650\\\sf 200 - 250&\sf 6&\sf 225 & \sf 100 & \sf 60\\\sf 250 - 300&\sf 3&\sf 275 & \sf 150 & \sf 450 \\\sf &\sf \sum f_i= 50& & & \sf \sum f_id_i = 900\\\end{array}}\end{gathered} \end{gathered}\end{gathered}

So, we have following data now

\rm :\longmapsto\:A = 125

\rm :\longmapsto\: \sum \: f_i \: = \: 50

\rm :\longmapsto\: \sum \: f_id_i \: = \: 900

\rm :\longmapsto\:h \: = \: 50

We know,

Mean using Short Cut Method is given by

\red{\rm :\longmapsto\: \boxed{ \sf{ \:Mean \: = \: A \: + \: \frac{ \sum \: f_i \: d_i}{ \sum \: f_i}}}}

On substituting the values, we get

\rm :\longmapsto\: \:Mean \: = \: 125 \: + \: \dfrac{ 900}{ 50}

\rm :\longmapsto\: \:Mean \: = \: 125 \: + \: \dfrac{ 90}{ 5}

\rm :\longmapsto\: \:Mean \: = \: 125 \: + \: 18

 \red{\rm :\longmapsto\: \boxed{ \tt{ \: \:Mean \: = \: 143\: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Mean using Direct Method :-

\red{ \boxed{ \sf{ \:Mean \: = \:  \: \frac{ \sum \: f_i \: x_i}{ \sum \: f_i}}}}

2. Mean using Step Deviation Method :-

\red{ \boxed{ \sf{ \:Mean \: = \: A \: + \: \frac{ \sum \: f_i \: u_i}{ \sum \: f_i} \:  \times  \: h \: }}}

Similar questions