Physics, asked by Anonymous, 1 month ago

please answer this question​

Attachments:

Answers

Answered by AestheticSky
7

Question : check the correctness of:

  • v² - u² = 2as

Dimensions:-

\\\bullet\quad\sf Dimensions\:of\:velocity = [M^{0} L^{1} T^{-1} ]\\

\\\bullet\quad\sf Dimensions\: of\: acceleration = [M^{0} L^{1} T^{-2} ]\\

\\\bullet\quad\sf Dimensions\:of\:displacement= [L^{1} ]\\

Principle of homogeneity of dimensions : Dimensions of each term of the given dimensional equation must be equal on both sides.

Applying this principle to check the correctness of 3rd kinematical equation of motion:

\\\quad\longrightarrow\quad\sf v^{2} - u^{2} = 2as\\

\\\quad\longrightarrow\quad\sf [M^{0}L^{1}T^{-1}   ]^{2} -[M^{0} L^{1}T^{-1}  ]^{2} = [M^{0}L^{1}T^{-2} ][L] \\

\\\quad\longrightarrow\quad\sf [M^{0}L^{2}T^{-2}   ] -[M^{0} L^{2}T^{-2}  ] = [M^{0} L^{2} T^{-2} ]\\

\\\quad\longrightarrow\quad\sf [M^{0}L^{2}T^{-2}   ]  = [M^{0} L^{2} T^{-2} ]\\

∵ LHS = RHS

Hence the equation is dimensionaly correct!!

Similar questions