Math, asked by beevi27, 13 days ago

please answer this question​

Attachments:

Answers

Answered by mathdude500
3

Given Question :-

Prove that

 \rm \: a + ar +  {ar}^{2} +  -  -  -  +  {ar}^{n}  =  \dfrac{ {ar}^{n + 1}  - a}{r - 1}

To prove, this result, we use Principal of Mathematical Induction.

These are n + 1 number of terms,

So, Let assume that

\rm :\longmapsto\:P(n + 1) : a + ar +  {ar}^{2} +- - +{ar}^{n}  =  \dfrac{ {ar}^{n + 1}  - a}{r - 1}

Step : 1 For n = 1 ( means sum of first two terms )

\rm :\longmapsto\:a + ar =  \dfrac{ {ar}^{1 + 1}  - a}{r - 1}

\rm :\longmapsto\:a + ar =  \dfrac{ {ar}^{2}  - a}{r - 1}

\rm :\longmapsto\:a + ar =  \dfrac{ a({r}^{2}  - 1)}{r - 1}

\rm :\longmapsto\:a + ar =  \dfrac{ a(r  - 1)(r + 1)}{r - 1}

\rm :\longmapsto\:a + ar =  a(r + 1)

\rm :\longmapsto\:a + ar =  ar +a

\bf\implies \:P(n) \: is \: true \: for \: n = 1

Step : 2 Let assume that P(n+1) is true for n = k, where k is some natural number.

\rm :\longmapsto\: a + ar +  {ar}^{2} +- - +{ar}^{k}  =  \dfrac{ {ar}^{k + 1}  - a}{r - 1}

Step : 3 We have to prove that P(n+1) is true for n = k + 1 terms

\rm :\longmapsto\:a + ar +  {ar}^{2} +- - +{ar}^{k + 1}  =  \dfrac{ {ar}^{k + 2}  - a}{r - 1}

Consider, LHS

\rm :\longmapsto\:a + ar +  {ar}^{2} +- - +{ar}^{k + 1}

\rm \:  =  \: a + ar +  {ar}^{2} +- -  +  {ar}^{k} +{ar}^{k + 1}

\rm \:  =  \: \dfrac{ {ar}^{k + 1}  - a}{r - 1}  +{ar}^{k + 1}

\rm \:  =  \: \dfrac{ {ar}^{k + 1}  - a +  {ar}^{k + 1} (r - 1)}{r - 1}

\rm \:  =  \: \dfrac{ {ar}^{k + 1}  - a +  {ar}^{k + 2} -  {ar}^{k + 1} }{r - 1}

\rm \:  =  \: \dfrac{   - a +  {ar}^{k + 2}}{r - 1}

\rm \:  =  \: \dfrac{{ar}^{k + 2} - a}{r - 1}

Hence, By the Process of Principal of Mathematical Induction,

 \boxed{ \tt{ \: \rm \: a + ar +  {ar}^{2} +  -  -  -  +  {ar}^{n}  =  \dfrac{ {ar}^{n + 1}  - a}{r - 1} \: }}

Similar questions