Math, asked by devipasupuleti9507, 1 month ago

please answer this question​

Attachments:

Answers

Answered by MaheswariS
1

\underline{\textbf{To prove:}}

\mathsf{\sqrt{\dfrac{cosecA+2\,cosA}{cosecA-2\,cosA}}=\dfrac{tanA+1}{tanA-1}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{cosecA+2\,cosA}{cosecA-2\,cosA}}

\mathsf{=\dfrac{\dfrac{1}{sinA}+2\,cosA}{\dfrac{1}{sinA}-2\,cosA}}

\mathsf{=\dfrac{\dfrac{1+2\,sinA\,cosA}{sinA}}{\dfrac{1-2\,sinA\,cosA}{sinA}}}

\mathsf{=\dfrac{1+2\,sinA\,cosA}{1-2\,sinA\,cosA}}

\textsf{Using the identity,}

\boxed{\mathsf{sin\,2A=2\,sinA\,cosA}}

\mathsf{=\dfrac{1+sin\,2A}{1-sin2\,A}}

\textsf{Using the identity,}

\boxed{\mathsf{sin\,2A=\dfrac{2\,tanA}{1+tan^2A}}}

\mathsf{=\dfrac{1+\dfrac{2\,tanA}{1+tan^2A}}{1-\dfrac{2\,tanA}{1+tan^2A}}}

\mathsf{=\dfrac{\dfrac{1+tan^2A+2\,tanA}{1+tan^2A}}{\dfrac{1+tan^2A-2\,tanA}{1+tan^2A}}}

\mathsf{=\dfrac{\dfrac{(tanA+1)^2}{1+tan^2A}}{\dfrac{(tanA-1)^2}{1+tan^2A}}}

\mathsf{=\dfrac{(tanA+1)^2}{(tanA-1)^2}}

\mathsf{=\left(\dfrac{tanA+1}{tanA-1}\right)^2}

\implies\mathsf{\dfrac{cosecA+2\,cosA}{cosecA-2\,cosA}=\left(\dfrac{tanA+1}{tanA-1}\right)^2}

\textsf{Taking square root on botsides, we get}

\mathsf{\sqrt{\dfrac{cosecA+2\,cosA}{cosecA-2\,cosA}}=\sqrt{\left(\dfrac{tanA+1}{tanA-1}\right)^2}}

\boxed{\mathsf{\sqrt{\dfrac{cosecA+2\,cosA}{cosecA-2\,cosA}}=\dfrac{tanA+1}{tanA-1}}}

Similar questions