Math, asked by arpitabarik58, 2 days ago

please answer this question​

Attachments:

Answers

Answered by XxitzZBrainlyStarxX
6

Question:-

 \sf \large \frac{d}{dx}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg] ^{ \frac{1}{2} }  =   - \frac{1}{ \sqrt{cos {}^{2}x } (cosx + sinx)} .

Given:-

 \sf \large \frac{d}{dx}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg] ^{ \frac{1}{2} }  =   - \frac{1}{ \sqrt{cos {}^{2}x } (cosx + sinx)} .

To Prove:-

 \sf \large \frac{d}{dx}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg] ^{ \frac{1}{2} }  =   - \frac{1}{ \sqrt{cos {}^{2}x } (cosx + sinx)} .

Solution:-

 \sf \large L.H.S. =  \sf \large \frac{d}{dx}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg] ^{ \frac{1}{2} }

 \sf \large =  \frac{1}{2}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg] ^{ \frac{1}{2}  - 1} . \:  \frac{d}{dx}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg]

  \sf \large =  \frac{1}{2}  \bigg[ \frac{1 - tanx}{1 + tanx}  \bigg] ^{ -  \frac{1}{2} }  \:  \frac{(1 + tanx)( - sec {}^{2}x) - (1 - tanx)sec {}^{2} x }{(1 + tanx) {}^{2} }

 \sf \large =  \frac{1}{2}  \frac{ \bigg[1 + tanx \bigg] ^{ \frac{1}{2} } }{ \bigg[1 - tanx \bigg] ^{ \frac{1}{2} } }  \: . \:  \frac{ \bigg[ - 2 \: sec {}^{2}x  \bigg]}{ \bigg[1 + tanx \bigg] ^{2} }

 \sf \large =  -  \frac{sec {}^{2}x }{ \sqrt{{[1 + tanx]} [1 - tanx]}[1 + tanx] }

 \sf \large =  -  \frac{sec {}^{2}x.cosx }{ \sqrt{{1 - tan {}^{2} x}(sinx + cosx)} }

 \sf \large =  -  \frac{secx}{ \sqrt{{ \bigg[ \frac{cos {}^{2} x - sin {}^{2} x}{cos {}^{2} x} } \bigg]}  \bigg[cosx + sinx \bigg]}  =  -  \frac{secx.cosx}{  \sqrt{cos2x} [cosx + sinx]}

 \sf \large =  -  \frac{1}{ \sqrt{cos2x} (cosx + sinx)}  = R.H.S.

Answer:-

{ \boxed{ \sf \large \color{red}Hence,  \sf \large \frac{d}{dx}  \bigg[  \frac{1 - tanx}{1 + tanx} \bigg] ^{ \frac{1}{2} }  =   - \frac{1}{ \sqrt{cos {}^{2}x } (cosx + sinx)} .}}

{ \boxed { \sf \large  \blue{\therefore L.H.S. = R.H.S.}}}

Hope you have satisfied.

Answered by talpadadilip417
2

Step-by-step explanation:

\begin{aligned} \text { L.H.S. }=& \tt \frac{d}{d x}\left[\frac{1-\tan x}{1+\tan x}\right]^{\frac{1}{2}}  \\   \\=&  \tt\frac{d}{d x}\left[\frac{\tan \pi / 4-\tan x}{1+\tan x \cdot \tan \pi / 4}\right]^{\frac{1}{2}} \\ \\  =& \tt \frac{d}{d x}\left[\tan \left(\frac{\pi}{4}-x\right)\right]^{1 / 2} \\ \\ =& \tt\frac{1}{2}\left[\tan \left(\frac{\pi}{4}-x\right)\right]^{-1 / 2} \cdot \sec ^{2}\left(\frac{\pi}{4}-x\right) \cdot ( - 1)  \\ \\ =& \tt-\frac{\sec ^{2}(\pi / 4-x)}{\sqrt{\tan \left(\frac{\pi}{4}-x\right)}} \\ \\ =&  \red{ \boxed{\tt\frac{ - 1}{\sqrt{\cos 2 x} \cdot \cos x} }}\end{aligned}

Similar questions