Math, asked by pihu999, 1 year ago

please answer this question

Attachments:

Answers

Answered by Mercidez
3
\huge{\red{\bold{Solution : \longrightarrow}}}

\mathsf{1) \: \: Given,}

\mathsf{\tiny{\blue{diameter \: \: of \: \: the \: \: circle = 63 \: \: cm}}}

\mathsf{\tiny{\blue{ = > radius \: \: of \: \: the \: \: circle = ( \frac{63}{7} ) \: cm}}} \\

 \mathsf{\green{Circumference \: \: of \: \: the \: \: circle}}

 \mathsf{= 2\pi {r}^{} }\\ \\ \mathfrak{= (2 \times \frac{22}{7} \times \frac{63}{2} ) \: cm} \\ \\ \mathfrak{= 198 \: cm}

_______________________
......................................................

\mathsf{2) \: \: Given,}

\mathsf{\tiny{\green{diameter \: \: of \: \: the \: \: circle = 35 \: cm}}}

 \mathsf{\tiny{\green{= > radius \: \: of \: \: the \: \: circle = (\frac{35}{2}) \: cm}}} \\

\mathsf{\blue{Circumference \: \: of \: \: the \: \: circle}}

\mathsf{ = 2\pi {r}^{} }\\ \\ \mathfrak{= (2 \times \frac{22}{7} \times \frac{35}{2} ) \: cm} \\ \\ \mathfrak{= 110 \: cm}

_______________________
......................................................

\mathsf{3) \: \: Given,}

\mathsf{\tiny{\pink{diameter \: \: of \: \: the \: \: circle = 21 \: cm}}}

\mathsf{\tiny{\pink{ = > radius \: \: of \: \: the \: \: circle = ( \frac{21}{2} ) \: cm}}} \\

\mathsf{\purple{Circumference \: \: of \: \: the \: \: circle}}

\mathsf{ = 2\pi {r}^{} }\\ \\ \mathfrak{= (2 \times \frac{22}{7} \times \frac{21}{2} ) \: cm} \\ \\ \mathfrak{= 66 \: cm}

<marquee>##RUWAT##<marquee>
Similar questions