please answer this question.
Attachments:
TahaTasneem:
excuse me, is it a+b, or a+ib?
Answers
Answered by
1
3/(2+cosθ+isinθ)=a+ib
or, 3(2+cosθ-isinθ)/(2+cosθ+isinθ)(2+cosθ-isinθ)=a+ib
or, 3(2+cosθ-isinθ)/{(2+cosθ)²-(isinθ)²}=a+ib
or, 3(2+cosθ-isinθ)/(4+4cosθ+cos²θ+sin²θ)=a+ib
or, 3(2+cosθ-isinθ)/(5+4cosθ)=a+ib [∵, sin²θ+cos²θ=1]
or, a+ib=3(2+cosθ)/(5+4cosθ)+i(-3sinθ)/(5+4cosθ)
Equating botth sides,
a=3(2+cosθ)/(5+4cosθ), b=-3sinθ/(5+4cosθ)
∴, LHS
=a²+b²={3(2+cosθ)/(5+4cosθ)}²+{-3sinθ/(5+4cosθ)}²
=9(4+4cosθ+cos²θ)/(5+4cosθ)²+9sin²θ/(5+4cosθ)²
=9(4+4cosθ+cos²θ+sin²θ)/(5+4cosθ)²
=9(5+4cosθ)/(5+4cosθ)²
=9/(5+4cosθ)
RHS
=4a-3
=4{3(2+cosθ)/(5+4cosθ)}-3
=12(2+cosθ)/(5+4cosθ)-3
=(24+12cosθ-15-12cosθ)/(5+4cosθ)
=9/(5+4cosθ)
∴, LHS=RHS (Proved)
or, 3(2+cosθ-isinθ)/(2+cosθ+isinθ)(2+cosθ-isinθ)=a+ib
or, 3(2+cosθ-isinθ)/{(2+cosθ)²-(isinθ)²}=a+ib
or, 3(2+cosθ-isinθ)/(4+4cosθ+cos²θ+sin²θ)=a+ib
or, 3(2+cosθ-isinθ)/(5+4cosθ)=a+ib [∵, sin²θ+cos²θ=1]
or, a+ib=3(2+cosθ)/(5+4cosθ)+i(-3sinθ)/(5+4cosθ)
Equating botth sides,
a=3(2+cosθ)/(5+4cosθ), b=-3sinθ/(5+4cosθ)
∴, LHS
=a²+b²={3(2+cosθ)/(5+4cosθ)}²+{-3sinθ/(5+4cosθ)}²
=9(4+4cosθ+cos²θ)/(5+4cosθ)²+9sin²θ/(5+4cosθ)²
=9(4+4cosθ+cos²θ+sin²θ)/(5+4cosθ)²
=9(5+4cosθ)/(5+4cosθ)²
=9/(5+4cosθ)
RHS
=4a-3
=4{3(2+cosθ)/(5+4cosθ)}-3
=12(2+cosθ)/(5+4cosθ)-3
=(24+12cosθ-15-12cosθ)/(5+4cosθ)
=9/(5+4cosθ)
∴, LHS=RHS (Proved)
Similar questions
Math,
8 months ago
Math,
8 months ago
Science,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago