Math, asked by puneethkadiyalpccj7x, 1 year ago

please answer this question........ ​

Attachments:

Answers

Answered by gitasadvocate
0

Answer:

7+'^2\left(7+4\sqrt{3}\right)-2'\:-4\sqrt{3}

Step-by-step explanation:

Answered by attinderpaul55225
1

♒♒♒♒♒♒

here \: given \: that :  \\ x =  \frac{1}{2  -  \sqrt{3} }  \\  =  > x =  \frac{1  \times (2 +  \sqrt{3}) }{(2 -  \sqrt{3})(2 +  \sqrt{3}  )}  \\ (multyply \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  = 1) \\  =  > x =  \frac{2 +  \sqrt{3} }{ {2}^{2}  -  { \sqrt{3} }^{2} }  \\ (becaue \: of \:  {(x + y)}^{2}  = (x + y)(x + y) \\ here \: we \: can \: compair \: 2 \: as \: x \: \\ and \:  \sqrt{3}  = y) \\  =  > x =  \frac{2 +  \sqrt{3} }{4 - 3}  = 2 +  \sqrt{3}  \\ now \: we \: have \: to \: find \: the \: value \: of \\  {x}^{2}  =(  {2 +  \sqrt{3}) }^{2}  \\  =  >  {x}^{2}  =  {(2)}^{2}  + 2.2. \sqrt{3}  +  {( \sqrt{3} )}^{2}  \\ we \: know \: that \:  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\  =  >  {x}^{2}  = 4 + 4 \sqrt{3}  + 3 \\  =  >  {x}^{2}  = 7 + 4 \sqrt{3}  \\ according \: to \: the \: question \\  {(x -  \frac{1}{x} )}^{2}  \\  = ( { \frac{ {x}^{2}  - 1}{x} )}^{2}  \\ we \: found \: that \\ x = 2 +  \sqrt{3}  \\ and \:  {x}^{2}  = 7 + 4 \sqrt{3}  \\ now \: putting \: the \: values \\ ( { \frac{7 + 4 \sqrt{3}  - 1}{2 +  \sqrt{3} }) }^{2}  \\  = ( { \frac{6 + 4 \sqrt{3} }{2 +  \sqrt{3} }) }^{2}  \\  = ( { \frac{2(3 + 2 \sqrt{3}) }{2 +  \sqrt{3} }) }^{2}  \\  = ( { \frac{2 \times  \sqrt{3} ( \sqrt{3 } + 2) }{2 +  \sqrt{3} } )}^{2}  \\ we \: know \: that \:  \sqrt{3}  \times  \sqrt{3}  = 3) \\  = ( { \frac{2 \sqrt{3} ( \sqrt{3 } + 2) }{2 +  \sqrt{3} }) }^{2}  \\  =(  {2 \sqrt{3} )}^{2} \\  = 2 \times 2 \times  \sqrt{3}  \times  \sqrt{3}  \\  = 4 \times 3 \\  = 12

♒♒♒♒♒♒

the answer is 12 ✔✔✔✔✔

✨✨hope it helps✨✨

Similar questions