Please answer this question
Answers
MN = 1/2(AB+CD)
MN = 1/2(11+8)
=. 1/2×19
=. 9.5
The length of MN is 9.5 cm.
Given:
⇒ Length of AB = 11 cm
⇒ Length of DC = 8 cm
⇒ M, N are midpoints of AD and BC respectively.
⇒ AB ║ DC
-------------------------------------------------------------------------------------------------------------
We have to recall the concept given below.
Three or more parallel lines cut two or more lines passing through them proportionally.
As M and N are midpoints of AD and BC respectively, AM : MD = BN : NC = 1 : 1. This means AD and BC are cut by the lines AB, MN and DC proportionally.
So it can be said that 'MN ║ AB ║ CD".
AD : DM = BC : CN = 2 : 1.
-------------------------------------------------------------------------------------------------------------
Construction:
⇒ Draw an altitude of the trapezium from D to point E at AB.
⇒ Draw other altitude of the trapezium from C to point F at AB.
⇒ Mark the point of intersection of DE and MN as P.
⇒ Mark the point of intersection of CF and MN as Q.
-------------------------------------------------------------------------------------------------------------
As DE and FC are perpendicular to AB, EF = PQ = DC = 8 cm.
Let AE = x
∴ BF = AB - (AE + EF) = 11 - (x + 8) = 11 - x - 8 = 3 - x.
-------------------------------------------------------------------------------------------------------------
Consider triangles AED and MPD.
→ ∠A = ∠M (corresponding because AB ║ MN)
→ ∠E = ∠P (corresponding because AB ║ MN)
→ ∠D = ∠D (common)
∴ ΔAED ~ ΔMPD
∴ AD : DM = AE : MP = x : MP = 2 : 1
∴ MP = x/2
Consider triangles BFC and NQC.
→ ∠B = ∠N (corresponding because AB ║ MN)
→ ∠F = ∠Q (corresponding because AB ║ MN)
→ ∠C = ∠C (common)
∴ ΔBFC ~ ΔNQC
∴ BC : CN = BF : QN = (3 - x)/ QN = 2 : 1
∴ QN = (3 - x) / 2
-------------------------------------------------------------------------------------------------------------
MN = MP + PQ + QN
MN = x/2 + 8 + (3 - x) / 2
MN = 8 + (x + 3 - x)/2
MN = 8 + 3/2
MN = 8 + 1.5
MN = 9.5 cm
Thus the length of MN is 9.5 cm.
-------------------------------------------------------------------------------------------------------------
Shortcut!
→→→ The length of MN is the average of the lengths of AB and DC ←←←
Therefore,