Math, asked by hermione1989, 1 year ago

Please answer this question​

Attachments:

Answers

Answered by brunoconti
3

Answer:

Step-by-step explanation:

BRAINLIEST

Attachments:
Answered by nain31
22
 \bold{GIVEN}

 \large \boxed{\mathsf{x = \dfrac{\sqrt{a+2b} +\sqrt{a-2b}}{\sqrt{a+2b} -\sqrt{a-2b}}}}

 \mathsf{It \:can\: also \:be \: written \: as}

 \large \boxed{\mathsf{\dfrac{x}{1}= \dfrac{\sqrt{a+2b} +\sqrt{a-2b}}{\sqrt{a+2b} -\sqrt{a-2b}}}}

 \mathsf{On \:applying\: componendo \:and}  \mathsf{dividendo \:on\: both\: sides}

 \mathsf{\dfrac{x+1}{x-1} =\dfrac{\sqrt{a+2b} +\sqrt{a-2b} +(\sqrt{a+2b} -\sqrt{a-2b})}{\sqrt{a+2b} -\sqrt{a-2b} - (\sqrt{a+2b} -\sqrt{a-2b})}}

 \mathsf{\dfrac{x+1}{x-1}= \dfrac{\sqrt{a+2b} +\sqrt{a-2b} +\sqrt{a+2b} -\sqrt{a-2b}}{\sqrt{a+2b} -\sqrt{a-2b} -\sqrt{a+2b} + \sqrt{a-2b}}}

 \mathsf{On \:solving\: we\: get, }

 \mathsf{\dfrac{x+1}{x-1}= \dfrac{2 \sqrt{a+2b}}{2\sqrt{a- 2b}}}

 \mathsf{We \:get}

 \mathsf{\dfrac{x+1}{x-1}= \dfrac{ \sqrt{a+2b}}{\sqrt{a- 2b}}}

 \mathsf{On \:squaring\: both \:sides,}

 \mathsf{\dfrac{(x+1)^{2}}{(x-1)^{2}}= \dfrac{ (\sqrt{a+2b})^{2}}{(\sqrt{a- 2b})^{2}}}

 \mathsf{Since,}

 \bigstar\boxed{\mathsf{(a+b)^{2} =a^{2}+ b^{2} + 2ab}}

 \bigstar \boxed{\mathsf{(a-b)^{2} =a^{2}+ b^{2} - 2ab}}

 \mathsf{\dfrac{x^{2} + 1 + 2x}{x^{2} + 1 - 2x}= \dfrac{(a+2b)}{(a-2b)}}

 \mathsf{On \: cross \: multiplication}

 \mathsf{(x^{2} + 1 + 2x)(a-2b) = (x^{2} + 1 + 2x)(a+ 2b)}

 \mathsf{(x^{2} + 1 + 2x)(a-2b) = (x^{2} + 1 + 2x)(a+ 2b)}

 \mathsf{ax^{2} + a + 2ax - 2bx^{2} - 2b - 4bx = ax^{2} + a - 2ax - 2bx^{2} -  4bx + 2bx}

 \mathsf{0 = ax^{2} - ax^{2} + a - a - 2ax -2ax +2bx^{2} +2bx^{2} + 2b +2b - 4bx +  4bx}

 \mathsf{Finally\: we \: get}

 \mathsf{0 =4bx^{2} -4ax + 4b}

 \mathsf{On \: taking \:4 \: as \: common \: we \: get}

 \mathsf{0 =bx^{2} -ax + b}

 \mathsf{L. H. S = R. H. S}

 \large \boxed{\mathsf{HENCE \: PROVED}}

Grimmjow: Beautiful Answer! Great use of LaTeX! ❤
FadedPrince: Sups Sista❤️
Anonymous: nYc answer @mods :)
ParamPatel: great
Swetha02: AMAZING!
Similar questions