Math, asked by AestheticSky, 1 month ago

please answer this question along with all the possible explanation !

Spam mat krna ... vaise hi dimag kharab hai :/

So don't even dare to spam!! ⚠️❌​

Attachments:

Answers

Answered by Anonymous
72

Given :-

0 < x <  \dfrac{π}{4}

To Find :-

Sec 2x - tan 2x

Solution :-

Let's start with that which we have to find i.e Sec 2x - tan 2x

 { \sf { Sec 2x - tan 2x } }

We knows that Sec x = 1/Cos x and tan x = Sin x/Cos x . So , above can be written as ;

 { \Rightarrow { \sf { \dfrac{1}{Cos 2x } - \dfrac{Sin 2x}{Cos 2x} } } }

After taking LCM it can be written as ;

 { \Rightarrow { \sf { \dfrac{1 - Sin 2x}{Cos 2x} } } }

We knows that Cos 2x = Cos²x - Sin²x , 1 = Cos²x + Sin²x and Sin 2x = 2 . Sin x . Cos x . So above can be written as ;

 { \Rightarrow { \sf { \dfrac{Cos²x + Sin²x - 2 . Sin x . Cos x }{Cos²x - Sin² x } } } }

We knows that a² + b² - 2ab = ( a - b )² and a² - b² = ( a + b ) ( a - b ) . So , above can be written as ;

 { \Rightarrow { \sf { \dfrac{(Cos x - Sin x )²}{(Cos x + Sin x ) ( Cos x - Sin x )} } } }

We know ( a - b )² can be written as ( a - b ) ( a - b ) . So ;

 { \Rightarrow { \sf { \dfrac{(Cos x - Sin x ) ( Cos x - Sin x )}{( Cos x + Sin x ) ( Cos x - Sin x )} } } }

After Cancelling ( Cos x - Sin x ) we gets ;

 { \Rightarrow { \sf { \dfrac{(Cos x - Sin x )}{Cos x + Sin x )} } } }

Dividing both numerator and denominator by cos x we get ;

 { \Rightarrow { \sf { \dfrac{ {\dfrac{Cos x - Sin x }{Cos x } } }{ { \dfrac{Cos x + Sin x }{Cos x } } } } } }

Separating LCM of both numerator and denominator we get ;

 { \Rightarrow { \sf { \dfrac{ { \dfrac{Cos x }{Cos x } - \dfrac{Sin x}{Cos x} } }{ { \dfrac{Cos x }{Cos x} + \dfrac{Sin x }{Cos x } } } } } }

After Cancelling cos x and substituting Sin x/Cos x with tan x we get ;

 { \Rightarrow { \sf { \dfrac{1 - tan x }{1 + tan x } } } }

We knows tan π/4 = 1 So above can be written as ;

 { \Rightarrow { \sf { \dfrac{tan \dfrac{π}{4} - tan x }{1 + tan \dfrac{π}{4} . tan x } } } }

Using formula of tan ( A - B ) = tan A - tan B / 1 + tan A . tan B we get ;

 { \Rightarrow { \sf { tan ( \dfrac{π}{4} - x ) } } }

Henceforth , The required answer is b ) tan ( π/4 - x )

Why be Sad ? Be always Happy !

Answered by TheDeity
37

 \\ \large  \sf \underbrace{About \: Question : -  } \\

In The question , We have to evaluate the given trigonometric expression.

So, Here we have to use basic trigonometric identities.

 \\ \large  \sf \underbrace{ \:  \: Answer  : -  } \\

Here, Given is

  • 0 < x < π/4
  • sec 2x - tan2x

Now, We know that  \sf \: sec \theta =  \dfrac{1}{cos \theta} ,  \sf \: tan \theta =  \dfrac{sin \theta}{cos \theta} .

So, Let's put this value in given equation

   \\  \sf \:  \sec 2x -  \tan2x

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{1}{cos2  \: x}   \sf \:  =  \dfrac{sin 2  \: x}{cos 2 \: x}

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{1 - sin2x}{cos 2x}   \sf \:

Now, As we know

  • 1 = sin²x + cos²x
  • sin2x = 2sin x cos x
  • cos2x = cos²x - sin²x

so, put this values in above equation , Then we get :

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{sin^{2} x +  {cos}^{2}x - 2sin \: x \: cos \: x \:  }{cos  ^{2} x -  {sin}^{2}x }   \sf \:

Now , In above equation The numerator is in the form of [(a-b)² = a²+b²-2ab] and the denominator is in the form of (a²-b²) = (a-b)(a+b) , so let's use this properties then we get,

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{( cos \: x - sin \: x) ^{2} }{(cos    \: x -  {sin} \: x)( cos   \:  x  +   {sin}  \: x)}   \sf \:   \\

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{( cos \: x - sin \: x) ^{ \cancel2} }{ \cancel{(cos    \: x -  {sin} \: x) }( cos   \:  x  +   {sin}  \: x)}   \sf \:   \\

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{( cos \: x - sin \: x)  }{( cos   \:  x  +   {sin}  \: x)}   \sf \:   \\

Now, Divide numerator and denominator by √2, we get :

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{  \dfrac{1}{ \sqrt{2} }  cos \: x - \dfrac{1}{ \sqrt{2} }  sin \: x  }{ \dfrac{1}{ \sqrt{2} } cos   \:  x  +    \dfrac{1}{ \sqrt{2} } {sin}  \: x}   \sf \:   \\

Now, we know that

  \\  \sf \: sin \frac{ \pi}{4}  = cos \frac{ \pi}{4}  =  \frac{1}{ \sqrt{2} }  \\

So , The above equation becomes

 \\  \:  \:  \:  \qquad \implies \sf \: \sf \:   \dfrac{ sin \dfrac{\pi}{ 4 }  cos \: x - cos\dfrac{\pi}{ 4 }  sin \: x  }{ cos\dfrac{\pi}{ 4} cos   \:  x  +   sin \dfrac{\pi}{ 4 } {sin}  \: x}   \sf \:   \\

Now, As we know that

 \\  \sf \: sin(A-B) = sin \:  A  \: cos  \: B - cos \:  A  \: sin \:  B

  \sf \: sin(A-B) = cos \:  A  \: cos  \: B  + sin \:  A  \: sin \:  B \\

So , using above property we get ,

Here, \\  \sf \: A =  \frac{\pi}{4}  \: and   \: B =  \frac{\pi}{4}  \\

  \\  \sf \:  sec \: 2x - tan \: 2x  =  \frac{sin \bigg( \dfrac{\pi}{4} - x \bigg) }{cos \bigg( \frac{\pi}{4}  - x \bigg)}  \\

 \ \\ \sf \:  \:  \:  \:  \qquad \qquad  \implies \: tan \bigg( \frac{\pi}{4}   - x\bigg)

 \\ \bold{\:† Hence, \: \underline{ Option \:  B \:  is  \: correct \: } }

Similar questions