Math, asked by AestheticSky, 6 days ago

Please Answer this question along with proper explanation~​

Attachments:

Answers

Answered by Anonymous
57

Given -

\:\:\:\:\:\:\dashrightarrow\sf{a^2=(x_1-x_2)^2+(y_1-y_2)^2}

\:\:\:\:\:\:\dashrightarrow\sf{b^2=(x_2-x_3)^2+(y_2-y_3)^2}

\:\:\:\:\:\:\dashrightarrow\sf{c^2=(x_3-x_1)^2+(y_3-y_1)^2}

\:\:\:\:\:\:\dashrightarrow\sf{l \left|\begin{array}{ccc}x_1& y_1 & 1 \\ x_2 & y_2& 1 \\ x_3 & y_3& 1 \end{array} \right|^2=(a+b+c)(b+c-a)(c+a-b)(a+b-c)}

To find -

  • the value of l.

Solution -

Let DEF be a triangle with sides a, b and c. Then we will apply the Heron's formula to find the area of triangle DEF,

Heron's formula -

 \:  \:  \:  \:  \:  \:  \: { \longrightarrow {\underline{\boxed{ \red{\bf{ Area\:of\:triangle=\sqrt{s(s - a)(s - b)(s - c) }}}}}}}

Where,

\green{\bf{s =  \frac{a + b + c}{2}}}

Further,

{\implies{\sf{(Area  \: of \:  triangle)^2= s(s - a)(s - b)(s - c)}}}

{\implies{\sf{(Area  \: of \:  triangle)^2=\frac{a + b + c}{2} ( \frac{a + b + c}{2} - a)(\frac{a + b + c}{2}- b)(\frac{a + b + c}{2}- c)}}}

{\implies{\sf{(Area  \: of \:  triangle)^2= (\frac{a + b + c}{2}) ( \frac{ b + c-a}{2} )(\frac{c + a -b}{2})(\frac{a + b -c}{2})}}}

{\implies{\sf{(Area  \: of \:  triangle)^2= \frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{16}}---- (i)}}

As we know that the Area of any triangle DEF with vertices is given by,

\implies\sf{Area\:of\:triangle=\frac{1}{2} \left|\begin{array}{ccc}x_1& y_1 & 1 \\ x_2 & y_2& 1 \\ x_3 & y_3& 1 \end{array} \right|}

Squaring both sides,

\implies\sf{(Area\:of\:triangle)^2=(\frac{1}{2})^2 \left|\begin{array}{ccc}x_1& y_1 & 1 \\ x_2 & y_2& 1 \\ x_3 & y_3& 1 \end{array} \right|^2}

\implies\sf{(Area\:of\:triangle)^2=\frac{1}{4} \left|\begin{array}{ccc}x_1& y_1 & 1 \\ x_2 & y_2& 1 \\ x_3 & y_3& 1 \end{array} \right|^2----(ii)}

Equating (i) and (ii),

\small{\implies\sf{\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{16}  = \frac{1}{4} \left|\begin{array}{ccc}x_1& y_1 & 1 \\ x_2 & y_2& 1 \\ x_3 & y_3& 1 \end{array} \right|^2}}

\small{\implies\sf{(a+b+c)(b+c-a)(c+a-b)(a+b-c)= \frac{16}{4} \left|\begin{array}{ccc}x_1& y_1 & 1 \\ x_2 & y_2& 1 \\ x_3 & y_3& 1 \end{array} \right|^2}}

\implies\sf{l=\frac{\cancel{16}^4}{\cancel{4}_1}}

\implies\bf{l=4}

Henceforth the value of l = 4

_________________________________

Please swipe left to right to view the full solution.

Answered by Anonymous
4

Before moving to the question, let's recall for any triangle with vertices {\bf{A(x_{1},y_{1})}}, {\bf{B(x_{2},y_{2})}} and {\bf{C(x_{3},y_{3})}}, the area of the triangle is just given by (1/2) times the determinant (not square), so we can assume here that the all x's and y's are the vertices of a triangle, do consider them as given in the attachment

If you use distance formula, then you can find that AB = a, BC = b and AC = c (By given information) also, now we also now another method to find area of a triangle if we know the semi perimeter which is half the sum of all sides, i.e here {(a+b+c)/2}, so if you use Heron's formula, we will be having :

{:\implies \quad \sf Area=\sqrt{\bigg(\dfrac{a+b+c}{2}\bigg)\bigg(\dfrac{a+b+c}{2}-a\bigg)\bigg(\dfrac{a+b+c}{2}-b\bigg)\bigg(\dfrac{a+b+c}{2}-c\bigg)}}

{:\implies \quad \sf Area=\sqrt{\bigg(\dfrac{a+b+c}{2}\bigg)\bigg(\dfrac{b+c-a}{2}\bigg)\bigg(\dfrac{c+a-b}{2}\bigg)\bigg(\dfrac{a+b-c}{2}\bigg)}}

Now, do square on both sides

{:\implies \quad \sf (Area)^{2}=\dfrac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{16}}

Now, also consider

{:\implies \quad \sf Area=\dfrac{1}{2}\begin{vmatrix}x_{1}& y_{1}& 1\\ \\ x_{2}& y_{2}& 1\\ \\ x_{3}& y_{3}& 1\end{vmatrix}}

Square both sides to obtain

{:\implies \quad \sf (Area)^{2}=\dfrac{1}{4}{\begin{vmatrix}x_{1}& y_{1}& 1\\ \\ x_{2}& y_{2}& 1\\ \\ x_{3}& y_{3}& 1\end{vmatrix}}^{2}}

Now, we can thus obtain by using the formula we derived from Heron's Formula

{:\implies \quad \sf {\begin{vmatrix}x_{1}& y_{1}& 1\\ \\ x_{2}& y_{2}& 1\\ \\ x_{3}& y_{3}& 1\end{vmatrix}}^{2}=\sf \dfrac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4}}

Now, substituting this value in the equation given

{:\implies \quad \bf I\sf \times \dfrac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4}=(a+b+c)(b+c-a)(c+a-b)(a+b-c)}

{:\implies \quad \boxed{\bf{I=4}}}

Making 4 the required answer

Attachments:
Similar questions