Math, asked by rehan1ansari, 4 days ago

Please answer this question, and do not spam, if you know the correct answer then only answer this. correct answer wip be marked brainliest.​

Attachments:

Answers

Answered by BeginnerinBrainly
0

Answer:

Recheck the numericals. And don't forget to mark me as brainliest.

Step-by-step explanation:

OA and OC are radii of the circle .

So, OA=OC=x

Since the perpendicular from the centre to a chord bisects the chord.

So, CP= 11/2 cm

AQ= 5/2 cm

OP=✓(OC^2-PC^2)

= ✓(x^2- 121/4 )

OQ=✓(OA^2 - AQ^2)

= ✓(x^2 - 25/4 )

Given,

PQ=3

=> OQ-OP= 3

=> ✓(x^2 - 25/4

 \sqrt{ {x}^{2}  -  \frac{25}{4} }  -  \sqrt{ {x}^{2}  -  \frac{121}{4} }  = 3 \\  =  >  {x}^{2}  -  \frac{25}{4}  +  {x}^{2}  -  \frac{121}{4}  - 2 \sqrt{( {x}^{2} -  \frac{25}{4} )( {x}^{2}  -  \frac{121}{4}  )}  = 9 \\  =  > 2 {x}^{2}  -  \frac{146}{4}  - 9 = 2 \sqrt{( {x}^{2} -  \frac{25}{4} )( {x}^{2}  -  \frac{121}{4}  )} \\  =  > (2 {x}^{2}  -  \frac{91}{2} ) = 2 \sqrt{( {x}^{4} -  \frac{146}{4} {x}^{2}   +  \frac{3025}{16} ) }  \\  =  > 4 {x}^{4}  +  \frac{8281}{4}  - 182 {x}^{2}  = 4 {x}^{4}  - 146 {x}^{2}  +  \frac{3025}{4}  \\  =  >  \frac{8281}{4}  - 182 {x}^{2}    +  146 {x}^{2}   -  \frac{3025}{4} = 0 \\  =  >  - 36 {x}^{2}  +  \frac{5256}{4}  =0 \\  =  >  3 6{x}^{2}  =  \frac{5256}{4}  \\  =  >  {x}^{2}  =  \frac{146}{4}  \\  =  > x =  \frac{ \sqrt{146} }{2}  \\  =  > x = 6.04 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (approx.)

)- ✓(x^2- 121/4 )=3

=>

Similar questions