Math, asked by masteraditri23, 4 months ago

Please answer this question as soon as possible
If a^b=c^d ; prove that [1/a]^b/d * [c/a]^[d+b/b]=1

Attachments:

Answers

Answered by Saby123
44

Solution :

 \displaystyle \sf{ \bold { To \: Prove \: - }}

\displaystyle \sf{ \implies{ \bold  { ( \dfrac{1}{a}  )^{ (\dfrac{b}{d} ) } \times \dfrac{ c }{ a }^{ ( \dfrac{ d + b }{ b} ) } = 1}}}

\\ \\ \sf{ \orange { Proof \: - }} \\ \\ \monospace { \bold { We \: know \: that \: - }} \\ \\ \tt{ \blue { 1^{(any \: number )} = 1 \: only }} \\ \\ \tt{ \red { \implies { a^{(-b/d )} \times \dfrac{ c }{ a }^{ ( \dfrac{ d + b }{ b} ) } }}} \\ \\ \tt{ \green { a^b = c^d }} \\ \\ \tt{ \orange { a = c^{(b/d)} }} \\ \\  \tt{ \blue { \implies { c^{(-b^2/d^2 )} \times c^{ ( d/b + 1 - b/d  ) } }}} \\ \\ \tt{ \red { \implies { c^0 = 1 }}} \\ \\ \tt{ \monospace { Hence \: Proved }}


Saby123: 1. (I) 4 ; (II) -3 , 2. (I) 3rd degree (II) 2nd degree ; 3. (I) 3 ; (II) -6 ; (III) -23 (IV) -18 ; 4. (I) x = -5 ( II) x = 5 ;
Saby123: 5 (I) . (4x - 1)( 3x - 1)
Saby123: (II). (x + 1)( 3x - 4)
Answered by Anonymous
40

Required Proof :-

 \small \sf{ \dag \: As  \: we  \: know \:  that}

 \sf \:  {1}^{(any \: number)}  = 1

For example =>

1² = 1 × 1 = 1

1³ = 1 × 1 × 1 = 1

 \sf \: a {}^{ \frac{ - b}{d} }  \times  \dfrac{c}{a}  {}^{  \bigg(\dfrac{d + b}{b}  \bigg)}

 \sf \: a =  {c}^{ \frac{b}{d} }

 \sf \:  {c}^{ \dfrac{ -  {b}^{2} }{ {d}^{2} } }  \times c  {}^ {\dfrac{d}{b}  +1 -  \dfrac{b}{d}  }

 \sf \:  {c}^{0}  = 1

Similar questions