Math, asked by Anonymous, 3 months ago

please answer this question ?

Class - 10th

Chapter - Trignometry

No spam please be kind ​

Attachments:

Answers

Answered by SuitableBoy
40

{\huge{\rm{\underline{\underline{Question:}}}}}

Q Prove that :

 \rm \:  \frac{sin \: x - cos \: x + 1}{sin \: x + cos \: x - 1}  =  \frac{1}{sec \: x -  {tan}^{2} \: x }  \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

As , in RHS , we have tan x and sec x , so ,

in LHS we have to make it in that form ...

So ,

LHS

 \mapsto \rm \:  \frac{sin \: x - cos \: x + 1 }{sin \: x + cos \: x - 1}  \\

divide every term by (cos x)

 \mapsto  \large\rm \:  \dfrac{ \frac{sin \: x}{cos \:  x}  -  \frac{cos \: x}{cos \: x}  +  \frac{1}{cos \: x} }{ \frac{sin \: x}{cos \: x}  +  \frac{cos \: x}{cos \: x}  -  \frac{1}{cos \: x} }  \\

 \mapsto \rm \:  \frac{tan \: x - 1 + sec \: x}{tan \: x + 1 - sec \: x}  \\

 \mapsto \rm \:  \frac{tan \: x - (1 - sec \: x)}{tan \: x + (1 - sec \: x)}  \\

Now ,

Multiplying neumerator and denominator by the conjugate of denominator ..

 \mapsto \rm \:  \dfrac{(tan \: x - (1 - sec \: x))(tan \: x - (1 - sec \: x))}{(tan \: x + (1 - sec \: x))(tan \: x - (1 - sec \: x)}

 \mapsto \rm \:  \frac{ {(tan \: x - (1 - sec \: x))}^{2} }{ {tan}^{2} \: x -  {(1 - sec \: x)}^{2}  }  \\

 \mapsto \rm \:  \frac{ {tan}^{2} x +  {(1 - sec \: x)}^{2}  - 2 \times tan \: x \times (1 - sec \: x)}{ { tan}^{2} \: x - (1 +  {sec}^{2} \: x - 2sec \: x)  }  \\

 \mapsto \rm \:  \frac{ {tan}^{2}  \: x + 1 +  {sec}^{2} \: x - 2sec \: x - 2tan \: x + 2tan \: x \: sec \: x }{ {tan}^{2} \: x - 1 -  {sec}^{2}  x + 2sec \: x}  \\

Using the Formula :

 \boxed{ \rm \:  {tan}^{2}  \: x + 1 =  {sec}^{2}  \: x} \:  \\ and \\  \boxed{ \rm \: 1 =  {sec}^{2}  \: x -  {tan}^{2}  \: x}

 \mapsto \rm \:  \frac{ {sec}^{2}  \: x +  {sec}^{2} x - 2sec \: x - 2tan \: x + 2tan \: x \: sec \: x}{ {tan}^{2} \: x - ( {sec}^{2} \: x -  {tan}^{2}   \: x) -  {sec}^{2}  \: x + 2sec \: x }  \\

Now refer to the attachment

Answered by suraj5070
289

 \huge {\boxed {\mathbb {QUESTION}}}

 \frac{sin\:x-cos\:x+1}{sin\:x+cos\:x-1}=\frac{1}{sec\:x+tan\:x}

 \huge {\boxed {\mathbb {ANSWER}}}

 LHS

 \implies \frac{sin\:x-cos\:x+1}{sin\:x+cos\:x-1}

 Divide \:each\: term \:by\: cos\: x

 \implies \frac{\frac{sin\:x}{cos\:x}- \cancel \frac{cos\:x} {cos\:x} +\frac{1}{cos\:x}} {\frac{sin\:x}{cos\:x}+ \cancel \frac{cos\:x} {cos\:x} - \frac{1}{cos\:x}}

 \implies \frac{tan\:x-1+sec\:x} {tan\:x+1-sec\:x}

\implies \frac{sec \: x + tan \: x - ( {sec}^{2}x \: - {tan}^{2}x) }{tan \: x + 1 - sec \: x}

 \implies \frac{sec \: x + tan \: x - (sec \: x + tan \: x)(sec \: x - tan \: x)}{tan \: x + 1 - sec \: x}

 \implies \frac{(sec \: x + tan \: x)(1 - sec \: x + tan \: x)}{tan \: x + 1 - sec \: x}

 \implies sec \: x + tan \: x \times \frac{sec \: x - tan \: x}{sec \: x - tan \: x}

 \implies \frac{ {sec}^{2}x - {tan}^{2} x }{sec \: x - tan \: x}

 \implies \frac{1}{sec \: x - tan \: x}

 RHS

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

____________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Formulas

 {sin}^{2} x+{cos}^{2}x=1

 1+{tan}^{2}x={sex}^{2}x

 1+{cot}^{2}x={cosec}^{2}x

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions