Math, asked by Anonymous, 5 months ago

please answer this question ?

Class - 10th

Chapter - Trignometry

Please help me brainly users.​

Attachments:

Answers

Answered by suraj5070
407

 \huge {\boxed {\mathbb {QUESTION}}}

 \frac{sin\:x-cos\:x+1}{sin\:x+cos\:x-1}=\frac{1}{sec\:x+tan\:x}

 \huge {\boxed {\mathbb {ANSWER}}}

 LHS

 \implies \frac{sin\:x-cos\:x+1}{sin\:x+cos\:x-1}

 Divide \:each\: term \:by\: cos\: x

 \implies \frac{\frac{sin\:x}{cos\:x}- \cancel \frac{cos\:x} {cos\:x} +\frac{1}{cos\:x}} {\frac{sin\:x}{cos\:x}+ \cancel \frac{cos\:x} {cos\:x} - \frac{1}{cos\:x}}

 \implies \frac{tan\:x-1+sec\:x} {tan\:x+1-sec\:x}

 \implies \frac{sec \: x + tan \: x - ( {sec}^{2}x \: - {tan}^{2}x) }{tan \: x + 1 - sec \: x}

 \implies \frac{sec \: x + tan \: x - (sec \: x + tan \: x)(sec \: x - tan \: x)}{tan \: x + 1 - sec \: x}

 \implies \frac{(sec \: x + tan \: x)(1 - sec \: x + tan \: x)}{tan \: x + 1 - sec \: x}

 \implies sec \: x + tan \: x \times \frac{sec \: x - tan \: x}{sec \: x - tan \: x}

 \implies \frac{ {sec}^{2}x - {tan}^{2} x }{sec \: x - tan \: x}

 \implies \frac{1}{sec \: x - tan \: x}

 RHS

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

____________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Formulas

 {sin}^{2} x+{cos}^{2}x=1

 1+{tan}^{2}x={sex}^{2}x

 1+{cot}^{2}x={cosec}^{2}x

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions