Math, asked by Sara1170, 1 month ago

Please answer this question correct, no wrong answers please!​

Attachments:

Answers

Answered by shubhamjagtap4511
1

Answer:

Q(10):- Ans is 5

Step-by-step explanation:

6^3=216

i,e. x=3.

put x in second EQ it gives ans 5^(9-8)

i,e. 5^(1)= 5 itself.

Answered by ajr111
9

Answer:

\mathrm{Q10.\ 5}

\mathrm{Q11.\ \bigg(\dfrac{81}{256}\bigg)}

Step-by-step explanation:

Given Questions :

\text{Q10. $6^x$ = 216, then find the value of $5^{3x-8}$}

\mathrm{Q11.\ If\ \bigg(\dfrac{p}{q}\bigg) = \bigg(\dfrac{3}{4}\bigg)^{18} \div \bigg(\dfrac{3}{4}\bigg)^{16}\ find\ \bigg(\dfrac{p}{q}\bigg)^2 }

Solution :

Q10.

\longmapsto \mathrm{6^x = 216}

\implies \mathrm{We\ know\ that,\ 6^3 = 216}

\implies \mathrm{6^x = 6^3}

\therefore \underline{\boxed{\mathbf{x=3}}}

Now, we have to find the value of \mathrm{5^{3x-8}}

As x = 3, substituting it we get,

\implies \mathrm{5^{3(3) - 8}}

\implies \mathrm{5^{9-8}}

\implies \mathrm{5^1}

\therefore \underline{\boxed{\mathbf{5^{3x-8}\bigg|_{x=3} = 5}}}

------------------------------------------

Q11.

\longmapsto \mathrm{\bigg(\dfrac{p}{q}\bigg) = \bigg(\dfrac{3}{4}\bigg)^{18} \div \bigg(\dfrac{3}{4}\bigg)^{16}}

We know that,

\boxed{\mathrm{a^m \div a^n = a^{m-n} \ ; \ if\ m>n}}

Here, m = 18 and n = 16 and thus, m > n; a = 3/4

\implies \mathrm{\bigg(\dfrac{p}{q}\bigg) = \bigg(\dfrac{3}{4}\bigg)^{18} \div \bigg(\dfrac{3}{4}\bigg)^{16}}

\implies \mathrm{\bigg(\dfrac{p}{q}\bigg) = \bigg(\dfrac{3}{4}\bigg)^{18-16}}

\implies \mathrm{\bigg(\dfrac{p}{q}\bigg) = \bigg(\dfrac{3}{4}\bigg)^{2}}

Now, squaring on both sides

\implies \mathrm{\bigg(\dfrac{p}{q}\bigg)^2 = \Bigg(\bigg(\dfrac{3}{4}\bigg)^{2}\Bigg)^2}

We know that,

\boxed{\mathrm{(a^m)^n = a^{mn}}}

Here, a = 3/4 ; m = 2, n = 2

So,

\implies \mathrm{\bigg(\dfrac{p}{q}\bigg)^2 = \bigg(\dfrac{3}{4}\bigg)^{2 \times 2}}

\implies \mathrm{\bigg(\dfrac{p}{q}\bigg)^2 = \bigg(\dfrac{3}{4}\bigg)^{4}}

\therefore \underline{\boxed{\mathbf{\bigg(\dfrac{p}{q}\bigg)^2 = \bigg(\dfrac{81}{256}\bigg)}}}

Hope it helps!!

Similar questions