Math, asked by divyachauhan80776333, 1 month ago


Please answer this question
Don't scam​

Attachments:

Answers

Answered by saina76
0

When f(x) is divided by x-1 and x+1 the remainder are 5 and 19 respectively.

∴f(1)=5 and f(−1)=19

⇒(1)

4

−2×(1)

3

+3×(1)

2

−a×1+b=5

and (−1)

4

−2×(−1)

3

+3×(−1)

2

−a×(−1)+b=19

⇒1−2+3−a+b=5

and 1+2+3+a+b=19

⇒2−a+b=5 and 6+a+b=19

⇒−a+b=3 and a+b=13

Adding these two equations, we get

(−a+b)+(a+b)=3+13

⇒2b=16⇒b=8

Putting b=8 and −a+b=3, we get

−a+8=3⇒a=−5⇒a=5

Putting the values of a and b in

f(x)=x

4

−2x

3

+3x

2

−5x+8

The remainder when f(x) is divided by (x-2) is equal to f(2).

So, Remainder =f(2)=(2)

4

−2×(2)

3

+3×(2)

2

−5×2+8=16−16+12−10+8=10

Answered by mathdude500
1

\large\underline{\bold{Given \:Question - }}

 \sf \: p(x)= {x}^{4}  -  {2x}^{3} +  {3x}^{2}   -  ax + b   is \:  a  \: polynomial  \: such \:  that   \\  \sf \: when \:  it  \: is \:  divided  \: by  \: x−1 \:  and \:  x+1,  \:  the \:  remainder  \:  \\  \sf \: are \:  respectively \:  5  \: and  \: 19, \: find \: value \: of \: a \: and \: b. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \\ \sf \:  Determine  \: the \:  remainder \:  when \:  p(x) \:  is  \: divided \:  by  \: (x−2).

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:p(x) =  {x}^{4} -  {2x}^{3} +  {3x}^{2}  -  ax + b

Further given that,

When p(x) is divided by x - 1, the remainder is 5.

We know,

Remainder Theorem states that if a polynomial p(x) is divided by linear polynomial x - a, the remainder is p(a)

So, using Remainder Theorem, we have

\rm :\longmapsto\:p(1) = 5

\rm :\longmapsto\:{1}^{4} -  {2(1)}^{3} +  {3(1)}^{2}  -  a(1) + b = 5

\rm :\longmapsto\:1-  2 +  3  -  a + b = 5

\rm :\longmapsto\:2  -  a + b = 5

\bf\implies \:b = 3 + a -  -  -  - (1)

Again, Given that

When p(x) is divided by (x + 1), the remainder is 19.

So, using Remainder Theorem, we have

\rm :\longmapsto\:p( - 1) = 19

\rm :\longmapsto\:{( - 1)}^{4} -  {2( - 1)}^{3} +  {3( - 1)}^{2}  -  a( - 1) + b = 19

\rm :\longmapsto\:1 +  2 +  3  +  a + b = 19

\rm :\longmapsto\:6 + a + b = 19

\rm :\longmapsto\:a + b = 19 - 6

\rm :\longmapsto\:a + b = 13

\rm :\longmapsto\:a + 3 + a = 13 \: \:  \:  \:  \:  \:   \:  \{using \: (1) \:  \}

\rm :\longmapsto\:2a + 3 = 13 \:

\rm :\longmapsto\:2a = 13 - 3

\rm :\longmapsto\:2a = 10

\bf\implies \:a = 5

Therefore,

\bf\implies \:b = 3 + a = 3 + 5 = 8

Hence,

\bf :\longmapsto\:p(x) =  {x}^{4} -  {2x}^{3} +  {3x}^{2}  -  5x + 8

Now, the remainder when p(x) is divided by x - 2 is given by

\bf :\longmapsto\:p(2)

\rm \:  =  \:\:{2}^{4} -  {2(2)}^{3} +  {3(2)}^{2}  -  5(2) + 8

\rm \:  =  \:16 - 16 + 12 - 10 + 8

\rm \:  =  \:20 - 10

\bf \:  =  \:10

\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\bf{a = 5} \\ \\  &\bf{b = 8}\\ \\  &\bf{Remainder = 10} \end{cases}\end{gathered}\end{gathered}

Similar questions