Math, asked by parth2111111112, 1 year ago

Please answer this question fast

Attachments:

Answers

Answered by IamIronMan0
0

Answer:

4

Explanation

It is based on rationalization

Formula used

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\ (x + y) {}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

 \frac{1}{1 +  \sqrt{3}  +  \sqrt{5} }  \times  \frac{1 - ( \sqrt{3} +  \sqrt{5} ) }{1 - ( \sqrt{3} +  \sqrt{5})  }  \\  \\  =  \frac{1 - ( \sqrt{3 }{+  \sqrt{5}) } }{ {1}^{2} - ( \sqrt{3} +  \sqrt{5}   ) {}^{2} }  \\  \\  =  \frac{1 - ( \sqrt{3}  +  \sqrt{5}) }{1 - 8 - 2 \sqrt{15} }  \\  \\  =  \frac{ \sqrt{3} +  \sqrt{5} - 1  }{2 \sqrt{15} + 7 }  \times  \frac{2 \sqrt{15} - 7 }{2 \sqrt{15} - 7 }  \\  \\  =  \frac{ (\sqrt{3} +  \sqrt{5}  - 1)(2 \sqrt{5}   \sqrt{3} - 7) }{ {(2 \sqrt{15}) }^{2} -  {7}^{2}  }  \\  \\  =  \frac{6 \sqrt{5}  + 10 \sqrt{3} - 2 \sqrt{15} - 7 \sqrt{3}  - 7 \sqrt{5}  + 7  }{60 - 49}  \\  \\  =  \frac{7 -  \sqrt{5} + ..... }{11}

So Compare , P is non rational term which is 7/11

Similar questions