Math, asked by dasoliviya128, 1 month ago

please answer this question fast​

Attachments:

Answers

Answered by nstitiprangya0
0

Answer is=

a=0

b=1

hope its help you

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

 \sf \: If \: \dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} } = a + b \sqrt{5}, \: find \: the \: value \: of \: a \: and \: b.

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} } = a + b \sqrt{5}

On rationalizing the denominator, we get

\rm :\longmapsto\: \dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} } \times \dfrac{7 + 3 \sqrt{5} }{7 + 3 \sqrt{5} }  = a + b \sqrt{5}

We know,

 \red{\boxed{ \rm \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{ {(7 + 3 \sqrt{5} )}^{2} }{ {7}^{2}  -  {(3 \sqrt{5} )}^{2} }  = a + b \sqrt{5}

We know,

 \red{\boxed{ \rm \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

So, using this, we get

\rm :\longmapsto\:\dfrac{ {7}^{2}  +  {(3 \sqrt{5} )}^{2}  + 2 \times 7 \times 3 \sqrt{5} }{49 - 45}  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{49 + 45 + 42 \sqrt{5} }{4}  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{94 + 42 \sqrt{5} }{4}  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{2(47 + 21 \sqrt{5}) }{4}  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{47 + 21 \sqrt{5}}{2}  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{47}{2}  + \dfrac{21}{2}  \sqrt{5} = a + b \sqrt{5}

So, on comparing, we get

\rm :\longmapsto\:\boxed{ \bf \:a = \dfrac{47}{2}} \:  \: and \:  \: \boxed{ \bf \:b =  \dfrac{21}{2} }

Additional Information :-

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions