Math, asked by niku4555, 11 months ago

please answer this question fast​

Attachments:

Answers

Answered by Anonymous
12
 \huge{\ulcorner{\red{\sf{ Answer}}}}\rfloor

♦ Given to simplify

\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} +\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}

\star \textsf{By Rationalising denominator of}

\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}

= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}

 = \dfrac{(\sqrt{5}+\sqrt{3})^2}{\sqrt{5}^2 -\sqrt{3}^2}

 = \dfrac{(\sqrt{5}+\sqrt{3})^2}{5 - 3}

 = \dfrac{(\sqrt{5}+\sqrt{3})^2}{2}

 = \dfrac{5 + 3 + 2\times\sqrt{5}\times\sqrt{3}}{2}

 = \dfrac{8 + 2\sqrt{15}}{2}

 = 4 + \sqrt{15} ....(i)

\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}

= \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} \times \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}

 = \dfrac{(\sqrt{5}-\sqrt{3})^2}{\sqrt{5}^2 -\sqrt{3}^2}

 = \dfrac{(\sqrt{5}-\sqrt{3})^2}{5 - 3}

 = \dfrac{(\sqrt{5}-\sqrt{3})^2}{2}

 = \dfrac{5 + 3 - 2\times\sqrt{5}\times\sqrt{3}}{2}

 = \dfrac{8 - 2\sqrt{15}}{2}

 = 4 - \sqrt{15} ....(ii)

 \star \textsf{Now adding (i) and (ii)}

 = ( 4 + \sqrt{15}) + (4 - \sqrt{15})

 = ( 4 + \cancel{\sqrt{15}} + 4 - \cancel{\sqrt{15}})

 = 8

 \star \boxed{\textsf{ So Answer = 8 }}
Answered by mitajoshi11051976
0

   </p><p></p><p>\huge{\ulcorner{\red{\sf{ Answer}}}}\rfloor┌Answer⌋ </p><p></p><p>♦ Given to simplify</p><p></p><p>\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} +\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>	</p><p> + </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>\star \textsf{By Rationalising denominator of}⋆By Rationalising denominator of </p><p></p><p>→\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}= </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>	</p><p> × </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{(\sqrt{5}+\sqrt{3})^2}{\sqrt{5}^2 -\sqrt{3}^2}= </p><p>5</p><p>	</p><p>  </p><p>2</p><p> − </p><p>3</p><p>	</p><p>  </p><p>2</p><p> </p><p>( </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{(\sqrt{5}+\sqrt{3})^2}{5 - 3}= </p><p>5−3</p><p>( </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{(\sqrt{5}+\sqrt{3})^2}{2}= </p><p>2</p><p>( </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{5 + 3 + 2\times\sqrt{5}\times\sqrt{3}}{2}= </p><p>2</p><p>5+3+2× </p><p>5</p><p>	</p><p> × </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{8 + 2\sqrt{15}}{2}= </p><p>2</p><p>8+2 </p><p>15</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= 4 + \sqrt{15}=4+ </p><p>15</p><p>	</p><p>  ....(i)</p><p></p><p>→\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} \times \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}= </p><p>5</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>	</p><p> × </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{(\sqrt{5}-\sqrt{3})^2}{\sqrt{5}^2 -\sqrt{3}^2}= </p><p>5</p><p>	</p><p>  </p><p>2</p><p> − </p><p>3</p><p>	</p><p>  </p><p>2</p><p> </p><p>( </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{(\sqrt{5}-\sqrt{3})^2}{5 - 3}= </p><p>5−3</p><p>( </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{(\sqrt{5}-\sqrt{3})^2}{2}= </p><p>2</p><p>( </p><p>5</p><p>	</p><p> − </p><p>3</p><p>	</p><p> ) </p><p>2</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{5 + 3 - 2\times\sqrt{5}\times\sqrt{3}}{2}= </p><p>2</p><p>5+3−2× </p><p>5</p><p>	</p><p> × </p><p>3</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= \dfrac{8 - 2\sqrt{15}}{2}= </p><p>2</p><p>8−2 </p><p>15</p><p>	</p><p> </p><p>	</p><p>  </p><p></p><p>= 4 - \sqrt{15}=4− </p><p>15</p><p>	</p><p>  ....(ii)</p><p></p><p>\star \textsf{Now adding (i) and (ii)}⋆Now adding (i) and (ii) </p><p></p><p>= ( 4 + \sqrt{15}) + (4 - \sqrt{15})=(4+ </p><p>15</p><p>	</p><p> )+(4− </p><p>15</p><p>	</p><p> ) </p><p></p><p>= ( 4 + \cancel{\sqrt{15}} + 4 - \cancel{\sqrt{15}})=(4+ </p><p>15</p><p>	</p><p> </p><p>	</p><p> +4− </p><p>15</p><p>	</p><p> </p><p>	</p><p> ) </p><p></p><p>= 8=8 </p><p></p><p>\star \boxed{\textsf{ So Answer = 8 }}⋆ </p><p> So Answer = 8 </p><p>

Similar questions