Math, asked by 0king204, 1 year ago

please answer this question fast
 \sqrt{2 +  \sqrt{5}  -  \sqrt{6 - 3 \sqrt{5}  +  \sqrt{14 - 6 \sqrt{5} } } }

Answers

Answered by sushant2505
4
Hi...☺

Here is your answer...✌

\sqrt{2 + \sqrt{5} - \sqrt{6 - 3 \sqrt{5} + \sqrt{14 - 6 \sqrt{5} } } } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: .....(1) \\ \\ first \: we \: calculate \\ \\ \sqrt{14 - 6 \sqrt{5} } \\ \\ = \sqrt{9 + 5 - 6 \sqrt{5} } \\ \\ = \sqrt{ {3}^{2} + {( \sqrt{5})}^{2} - 2 \times 3 \times \sqrt{5} } \\ \\ = \sqrt{{(3 - \sqrt{5})}^{2} } \\ \\ = 3 - \sqrt{5} \\ \\ on \: putting \: this \: value \: in \: (1)\: \\ we \: have \\ \\ \sqrt{2 + \sqrt{5} - \sqrt{6 - 3 \sqrt{5} + 3 - \sqrt{5} } } \\ \\ = \sqrt{2 + \sqrt{5} - \sqrt{9 - 4 \sqrt{5} } } \\ \\ = \sqrt{2 + \sqrt{5} - \sqrt{ 5 + 4- 4 \sqrt{5} } } \\ \\ = \sqrt{2 + \sqrt{5} - \sqrt{ { (\sqrt{5})}^{2} + {2}^{2} - 2  \sqrt{5} \times 2 } } \\ \\ = \sqrt{2 + \sqrt{5} - \sqrt{{( \sqrt{5} - 2) }^{2} } } \\ \\ = \sqrt{2 + \sqrt{5} - ( \sqrt{5} - 2) } \\ \\ = \sqrt{2 + \sqrt{5} - \sqrt{5} + 2} \\ \\ = \sqrt{2 + 2} = \sqrt{4} \\ \\ = 2

0king204: why did you take ((5^1/2)-2) and not (2-(5^1/2))
Answered by rahuljha222
0
your answer is 2

mark as brainliest

rahuljha222: mark as brainliest plz
rahuljha222: please
Similar questions