Math, asked by jessy27, 1 month ago

please answer this question fast with detailed explanation
press the image for detailed view

Attachments:

Answers

Answered by poudelpratik50
0

Answer:

2 is the correct answer.

Answered by mathdude500
1

\large\underline{\sf{Given \:Question - }}

 \sf \: If  \: cos\theta  =  -  \: \dfrac{3}{5} \: and \: 180\degree  < \theta  < 270\degree , \: then \: tan\dfrac{\theta }{2} =

 \:  \:  \:  \:  \: 1) \:  \: 2

 \:  \:  \:  \:  \: 2) \:  \:  -  \: 2

 \:  \:  \:  \:  \: 3) \:  \: 1

 \:  \:  \:  \:  \: 4) \:  \:   - \: 1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:180\degree  < \theta  < 270\degree

and

\rm :\longmapsto\:cos\theta  =  -  \: \dfrac{3}{5}

We know that,

 \red{\boxed{ \sf \: cos2x =  \frac{1 -  {tan}^{2}x}{1 +  {tan}^{2} x}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{1 -  {tan}^{2} \dfrac{\theta }{2}}{1 +  {tan}^{2} \dfrac{\theta }{2}}  =  -  \: \dfrac{3}{5}

\rm :\longmapsto\:3 + 3 {tan}^{2}\dfrac{\theta }{2} =  - 5 + 5 {tan}^{2} \dfrac{\theta }{2}

\rm :\longmapsto\:3 {tan}^{2}\dfrac{\theta }{2} - 5 {tan}^{2} \dfrac{\theta }{2} =  - 5  -  3

\rm :\longmapsto\: -  \: 2 {tan}^{2}\dfrac{\theta }{2} =  -8

\rm :\longmapsto\:  \:  {tan}^{2}\dfrac{\theta }{2} = 4

\bf\implies \:tan\dfrac{\theta }{2} =  \:  \pm \: 2

But, it is given that

\rm :\longmapsto\:180\degree  < \theta  < 270\degree

\bf\implies \:90\degree  < \dfrac{\theta }{2} < 135\degree

\bf\implies \:\dfrac{\theta }{2} \:  \in \:  {2}^{nd}  \: quadrant

\bf\implies \:tan\dfrac{\theta }{2} < 0

\bf\implies \:tan\dfrac{\theta }{2}  \:  =  \: \:  -  \: 2

  • Hence, Option 2) is correct.

Additional Information :

\boxed{ \sf \: sin2x = 2sinx \: cosx}

\boxed{ \sf \: cos2x = 1 -  {2sin}^{2}x}

\boxed{ \sf \: cos2x =  {2cos}^{2}x - 1}

\boxed{ \sf \: cos2x =  {cos}^{2}x -  {sin}^{2}x}

\boxed{ \sf \: sin2x =  \frac{2tanx}{1  +   {tan}^{2}x } }

\boxed{ \sf \: tan2x =  \frac{2tanx}{1 -   {tan}^{2}x } }

Similar questions