Math, asked by cherrycharitha422, 8 months ago

please answer this question fast
with process​

Attachments:

Answers

Answered by tarracharan
1

{\huge{\red{\underline{Answer:}}}}

Option C

x = ( \frac{b}{a} ,  - \frac{d}{c} ) \\

{\huge{\blue{\underline{Given:}}}}

f(x) = (ax - b)(cx + d) = 0

{\huge{\pink{\underline{To\:Find:}}}}

The solution of f(x)

{\huge{\orange{\underline{Formula:}}}}

x =  \frac{ - b ± \sqrt{ {b}^{2}  - 4ac} }{ 2a }  \\

{\huge{\green{\underline{Solution:}}}}

(ax - b)(cx + d) = 0

(ac) - (bc)x + (ad)x - bd = 0

(ac) + (ad - bc)x + (-bd) = 0

Compare with "ax² + bx + c = 0"

x =  \frac{ - b ±  \sqrt{ {b}^{2}  - 4ac} }{ 2a }  \\

x =  \frac{ - (ad - bc) ±  \sqrt{(ad - bc)2 - 4(ac)( - bd)} }{2(ac) }  \\  =  \frac{bc - ad ±  \sqrt{ {(ad)}^{2} +  {(bc)}^{2}  - 2abcd + 4abcd } }{2ac}  \\  =   \frac{bc - ad ± \sqrt{ {(ad)}^{2} +  {(bc)}^{2}   +  2abcd } }{2ac}   \\  =  \frac{bc - ad ±( ad + bc)}{2ac}

1st case:

x  =  \frac{bc - ad +( ad + bc)}{2ac}  \\  =  \frac{2bc}{2ac}  =  \frac{b}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

2nd case:

x  =  \frac{bc - ad -( ad + bc)}{2ac}  \\  = - \frac{2ad}{2ac}  = - \frac{d}{c}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{\red{Answer: \: x = ( \frac{b}{a},   - \frac{d}{c} ) }}

Answered by saicharan2006
0

Option C

______________

Similar questions