Math, asked by ROHITRAJCOC11, 1 year ago

please answer this question fully explain I mark you as a brainlist ok help me​

Attachments:

Answers

Answered by shadowsabers03
0

a+b+c=0 \\ \\ \\

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) \\ \\ a^3+b^3+c^3-3abc = 0(a^2+b^2+c^2-ab-bc-ac) \\ \\ a^3+b^3+c^3-3abc = 0 \\ \\ a^3+b^3+c^3=3abc \\ \\ \frac{a^3+b^3+c^3}{abc}=3 \\ \\ \\

==============================================================

\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab} \\ \\ \\ \frac{a^2(ac)+b^2(bc)}{(bc)(ac)}+\frac{c^2}{ab} \\ \\ \\ \frac{a^3c+b^3c}{abc^2}+\frac{c^2}{ab} \\ \\ \\ \frac{(a^3c+b^3c)(ab)+c^2(abc^2)}{(abc^2)(ab)} \\ \\ \\ \frac{a^4bc+ab^4c+abc^4}{a^2b^2c^2} \\ \\ \\ \frac{abc(a^3+b^3+c^3)}{(abc)^2} \\ \\ \\ \frac{a^3+b^3+c^3}{abc}=3

\therefore\ \frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=3

$$Hence proved! \\ \\ \\ Thank you. :-)


shadowsabers03: The answer is on my own. Not from any sources.
shadowsabers03: Please mark it as the brainliest.
shadowsabers03: Thank you for marking my answer as the brainliest.
Answered by paruul
0

if a + b + c= 0

then

a^3 + b^3+ c^3 = 3abc

 \frac{a^3 + b^3+ c^3}{abc}  = 3

a^2/bc + b^2/ac + c^2/ab = 3

Similar questions