Please answer this question.....guys... please correct answer....
Vry important..
Don't spam!!
Answers
Answer:
x = 110°
Step-by-step explanation:
∠KAY + ∠LAY = 180° (Linear Pair)
135° + ∠LAY = 180°
∠LAY = 180 - 135
∠LAY = 45°
∠LAY + ∠AYL + ∠ALY = 180° (ASP of Triangle)
45° + 35° + ∠ALY = 180°
80° + ∠ALY = 180°
∠ALY = 180 - 80
∠ALY = 100°
∠MLY + ∠ALY = 180° (Linear Pair)
∠MLY + 100° = 180°
∠MLY = 180 - 100
∠MLY = 80°
∠AYL + ∠BYL = 180° (Linear pair)
35° + ∠BYL = 180°
∠BYL = 180 - 35
∠BYL = 145°
∠BML + ∠MLY + ∠BYL + ∠MBY = 360° (ASP of Quadrilateral)
30° + 80° + 145° + ∠MBY = 360°
255° + ∠MBY = 360°
∠MBY = 360 - 255
∠MBY = 105°
∠BYD = ∠AYL = 35° (Vertically Opposite Angle)
∠MBY + ∠DBY = 180° (Linear Pair)
105° + ∠DBY = 180°
∠DBY = 180 - 105
∠DBY = 75°
∠BYD + ∠DBY + ∠BDY = 180° (ASP of Triangle)
35° + 75° + ∠BDY = 180°
110° + ∠BDY = 180°
∠BDY = 180 - 110
∠BDY = 70°
∠BDY + x = 180° (Linear Pair)
70° + x = 180°
x = 180 - 70
x = 110°
Alternate method after solving ∠DBY
x is exterior angle of ▲BDY, so
x = ∠BYD + ∠DBY (Exterior Angle Property)
x = 35° + 75°
x = 110°
Hope it helps...
Plz mark me as brainliest.