Math, asked by amishafilomeena1003, 1 day ago

please answer this question if you know the answer then only answer else reported​

Attachments:

Answers

Answered by ripinpeace
57

Step-by-step explanation:

Given -

  • ∠1 = ∠2
  •  \angle 3 =  \angle 4

  •  \rm{ \angle 1 =  \angle 2 =  \dfrac{1}{2}  \angle ABC}

  •  \rm{ \angle 3=  \angle 4 =  \dfrac{1}{2}  \angle ACD}

To prove -

  •  \rm{  \angle BTC =  \dfrac{1}{2}  \angle BAC}

Solution -

In ∆ABC,

  {\longmapsto\rm{ \bf∠A + ∠B = ∠ACD        \:  \:  \:     \:  \:  \:  \:   ( exterior  \: angle  \: property)}}

Dividing both sides by 1/2,

  {\longmapsto\rm{ \bf \dfrac{1}{2} ∠A + \dfrac{1}{2}  ∠B =  \dfrac{1}{2} ∠ACD  }}

  {\longmapsto\rm{ \bf \dfrac{1}{2} ∠A + \dfrac{1}{2}  ∠B =  ∠4 \:  \:  \:  \:  \: (1)  }}

Now, in ∆TBC,

  {\longmapsto\rm{ \bf∠2 + ∠T = ∠4     \:  \:  \:     \:  \:  \:  \:   ( exterior  \: angle  \: property)}}

  {\longmapsto\rm{ \bf \dfrac{1}{2}  \angle B + ∠T = ∠4 \:  \:  \:  \:  \:  \:  \: (2)    }}

Equating (1) and (2),

  {\longmapsto\rm{ \bf \dfrac{1}{2} ∠A +  \cancel{\dfrac{1}{2}  ∠B} =    \cancel{\dfrac{1}{2}  \angle B} + ∠T   }}

  {\longmapsto\rm{ \bf \dfrac{1}{2} ∠A =     ∠T   }}

 \longmapsto \rm{ \bf \dfrac{1}{2}  \angle \: BAC = \angle BTC }

or

  {\longmapsto\rm{ \bf  \orange{ \angle BTC = \dfrac{1}{2}  \angle BAC \: \green{ ,  hence \: proved}}}}

Attachments:
Similar questions