Math, asked by ThisIsYourFriend, 1 month ago

Please answer this question immediately
it is urgent

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Given \:Question - }}

In ∆ PQR, right angled at Q, in which PQ = 4 units, PR = 5 units. What is the value of tan²R - cot²P ?

\large\underline{\sf{Solution-}}

Given that,

A ∆ PQR, right angled at Q, such that PQ = 4 units and PR = 5 units.

Now, In ∆ PQR

By Pythagoras theorem, we have

\rm :\longmapsto\: {PR}^{2} =  {PQ}^{2} +  {QR}^{2}

On substituting the values, we get

\rm :\longmapsto\: {5}^{2} =  {4}^{2} +  {QR}^{2}

\rm :\longmapsto\: 25 = 16 +  {QR}^{2}

\rm :\longmapsto\: 25 - 16 = {QR}^{2}

\rm :\longmapsto\: 9= {QR}^{2}

\bf\implies \:QR = 3 \: units

Now,

\rm :\longmapsto\:tanR = \dfrac{opposite \: side}{adjacent \: side}

\rm :\longmapsto\:tanR = \dfrac{PQ}{QR}

\rm :\longmapsto\:tanR = \dfrac{4}{3}

Now,

\rm :\longmapsto\:cotP = \dfrac{adjacent \: side}{opposite \: side}

\rm :\longmapsto\:cotP = \dfrac{PQ}{QR}

\rm :\longmapsto\:cotP = \dfrac{4}{3}

So, Consider

\rm :\longmapsto\: {tan}^{2}R \:  -  \:  {cot}^{2}P

\rm \:  =  \:  {\bigg[\dfrac{4}{3} \bigg]}^{2}  -   {\bigg[\dfrac{4}{3} \bigg]}^{2}

\rm \:  =  \: \dfrac{16}{9}  - \dfrac{16}{9}

\rm \:  =  \: 0

So,

\rm :\longmapsto\: \red{ \boxed{ \sf{  \:  \:  \: \:{tan}^{2}R \:  -  \:  {cot}^{2}P = 0 \:  \:  \:  \: }}}

Alternative Method :-

Given that,

A ∆ PQR, right angled at Q

\bf\implies \:\angle \:P + \angle \:Q + \angle \:R   = 180 \degree

\rm :\longmapsto\: \:\angle \:P + 90\degree+ \angle \:R   = 180 \degree

\rm :\longmapsto\: \:\angle \:P + \angle \:R   = 180 \degree - 90\degree

\rm :\longmapsto\: \:\angle \:P + \angle \:R   = 90 \degree

\rm :\longmapsto\: \: \angle \:R   = 90 \degree - \angle \:P

\rm :\longmapsto\: \: tanR   =tan( 90 \degree - P)

\rm :\longmapsto\: \: tanR   =cot P

On squaring both sides, we get

\rm :\longmapsto\: \: tan {}^{2} R   =cot {}^{2}P

\rm :\longmapsto\: \: tan {}^{2}R  - cot {}^{2}P = 0

Similar questions