Math, asked by Anonymous, 9 months ago

Please answer this question ✨✨ It's a four mark Question so answer it briefly ✨✨​

Attachments:

Answers

Answered by raghukate12345643
4

hope it's Help you

you also 10th

same I am also 10th

Attachments:
Answered by BrainlyPopularman
9

Question :

Show that :   \:  \: { \bold{ \tan( {75}^{ \circ} )  =  2 +  \sqrt{3}  }} \:  \:

ANSWER :

TO PROVE :

   \\ \:  \: \to \:  \:  { \bold{ \tan( {75}^{ \circ} )  =  2 +  \sqrt{3}  }} \:  \: \\

SOLUTION :

• Let's take L.H.S.

   \\ \:  \:  = \:  \:  { \bold{ \tan( {75}^{ \circ} )    }} \:  \: \\

• We should write this as –

   \\ \:  \:  = \:  \:  { \bold{ \tan( {45}^{ \circ} +{30}^{ \circ} )    }} \:  \: \\

• Now using identity –

   \\ \:  \:  \large \implies{ \boxed{ \bold{ \tan(A + B)  =  \dfrac{ \tan(A)  +  \tan(B) }{1 -  \tan(A)  \tan(B) }  }}} \:  \: \\

• So that –

   \\ \:  \:  { \bold{  =  \dfrac{ \tan( {45}^{ \circ})  +  \tan({30}^{ \circ}) }{1 -  \tan( {45}^{ \circ})  \tan({30}^{ \circ}) }  }} \:  \: \\

• We know that –

   \\ \:  \:   \longrightarrow  \:  { \bold{ \tan( {45}^{ \circ} )   = 1  }} \:  \: \\

   \\ \:  \:   \longrightarrow  \:  { \bold{ \tan( {30}^{ \circ} )   =  \dfrac{1}{ \sqrt{3} }   }} \:  \: \\

• So that –

   \\ \:  \:  { \bold{  =  \dfrac{ 1+   \dfrac{1}{ \sqrt{3} }  }{1 -  (1)  (\dfrac{1}{ \sqrt{3} } )}  }} \:  \: \\

   \\ \:  \:  { \bold{  =  \dfrac{ 1+   \dfrac{1}{ \sqrt{3} }  }{1 -   \dfrac{1}{ \sqrt{3} } }  }} \:  \: \\

   \\ \:  \:  { \bold{  =  \dfrac{  \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} }  }{  \dfrac{ \sqrt{3} - 1 }{ \sqrt{3} } }  }} \:  \: \\

   \\ \:  \:  { \bold{  =  \dfrac{ { \sqrt{3}  + 1}  }{ { \sqrt{3} - 1 } } }} \:  \: \\

• Now rationalization –

   \\ \:  \:  { \bold{  =  \dfrac{ { \sqrt{3}  + 1}  }{ { \sqrt{3} - 1 } }  \times  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}   +  1} }} \:  \: \\

   \\ \:  \:  { \bold{  =  \dfrac{ ({ \sqrt{3}  + 1}  ) {}^{2} }{ {( \sqrt{3})  {}^{2} - 1 } }   \:  \:  \:  \:  \:  \:  [  \:  \: \because \:  \: (a + b)(a - b) =  {a}^{2} -  {b}^{2}  ]}}\\

   \\ \:  \:  { \bold{  =  \dfrac{ ({ \sqrt{3} ) {}^{2}  +( 1}  ) {}^{2} + 2 \sqrt{3}  }{ {3- 1 } }   \:  \:  \:  \:  \:  \:  [  \:  \: \because \:  \: (a + b) {}^{2}  =   {a}^{2} +  {b}^{2} + 2ab  ]}}\\

   \\ \:  \:  { \bold{  =  \dfrac{ 3 + 1 + 2 \sqrt{3}  }{ {2} }   }}\\

   \\ \:  \:  { \bold{  =  \dfrac{ 4 + 2 \sqrt{3}  }{ {2} }   }}\\

   \\ \:  \:  { \bold{  =  \dfrac{  \cancel2( 2+  \sqrt{3} ) }{ { \cancel2} }   }}\\

   \\ \:  \:  { \bold{  =  2 +  \sqrt{3}   }}\\

   \\ \:  \:  { \bold{  =  R.H.S. \:  \:  \:  \:  \: (Hence \:  \: proved)   }}\\

Similar questions