Physics, asked by Sushmarai231982, 9 months ago

please answer this question its very urgent​

Attachments:

Answers

Answered by tanyabajpai70
2

Answer: The correct answer is option B

Explanation:

As the 9 micro C charge is having more intensity, so the 3rd charge must be placed as closer as it can be kept near 1 micro C charge because of which the system will get balanced and the net force will be zero

Answered by RISH4BH
135

\large{\underline{\underline{\red{\sf{\hookrightarrow Given:- }}}}}

  • There are two charges of 1μ. and 9μC .
  • They are placed 1m apart.

\large{\underline{\underline{\red{\sf{\hookrightarrow To\:Find:-}}}}}

  • Where we should place third charge , so that it experiences no net force due to these.

\large{\underline{\underline{\red{\sf{\hookrightarrow Formula\:Used:- }}}}}

We will use Columb's Law :-

\large\pink{\underline{\boxed{\purple{\tt{ \dag  Force\:\:=\:\:\dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{q_1\:q_2}{r^2}\bigg)}}}}}

\large{\underline{\underline{\red{\sf{ \hookrightarrow Answer:-}}}}}

\tt[For\: diagram\:refer\:to\: attachment:]

Let us place that charge (q) at x m distance from 1μC charge .

So , its distance from 9μC charge will be (x-1)m

Now since the net force on q will be 0 , therefore both charges of 1μC and 9μC will exert same force on it .

Let us take that it exerts a force F on it .

\underline{\blue{\tt Between \:A\:and\:B}}

\tt:\implies F = \:\:\dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{q_1\:q_2}{r^2}\bigg)

\tt:\implies F=  \:\:\dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{1\mu C\times q}{x^2}\bigg)

\underline{\boxed{\red{\tt\longmapsto  F=  \dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{q\mu C }{x^2}\bigg)}}}

________________________________________

\underline{\blue{\tt Between \:C\:and\:B}}

\tt:\implies F = \:\:\dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{q_1\:q_2}{r^2}\bigg)

\tt:\implies F=  \:\:\dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{9\mu C\times q}{(1-x)^2}\bigg)

\underline{\boxed{\red{\tt\longmapsto  F=  \dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{9q\mu C }{(1-x)^2}\bigg)}}}

__________________________________________

\pink{\tt \leadsto Now \:divide\:these\:two\:equ^n:}

\tt:\implies \dfrac{\cancel{F}}{\cancel{F}}=\dfrac{ \dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{9q\mu C }{(1-x)^2}\bigg)}{  \dfrac{1}{4\pi\epsilon_0}\bigg(\dfrac{q\mu C }{x^2}\bigg)}

\tt:\implies \cancel{ \dfrac{1}{4\pi\epsilon_0}}\bigg(\dfrac{9q\mu C }{(1-x)^2}\bigg)=\cancel{ \dfrac{1}{4\pi\epsilon_0}}\bigg(\dfrac{q\mu C }{x^2}\bigg)

\tt:\implies \dfrac{q}{x^2}=\dfrac{9q}{(1-x)^2}

\tt:\implies 9\times x^2=(1-x)^2

\tt:\implies 9x^2=1+x^2-2x

\tt:\implies 9x^2-x^2+2x+1=0

\tt:\implies 8x^2+2x-1=0

\tt:\implies 8x^2+4x-2x-1=0

\tt:\implies 4x(2x+1)-1(2x+1)=0

\tt:\implies (4x-1)(2x+1)=0

\underline{\boxed{\red{\tt{\longmapsto \:\:x\:\:=\:\:\dfrac{1}{4},\dfrac{-1}{2}}}}}

\bf Since\:x\: can't\;be\; negative\:,so\:x\:=\:\dfrac{1}{4}m

\blue{\boxed{\bf{\dag\:\:Hence\:it\:should\:be\:placed\:\dfrac{1}{4}m\:from\:1\mu C\:charge.}}}

Attachments:
Similar questions