Math, asked by ava12348, 10 months ago

please answer this question my dear brainly friends​

Attachments:

Answers

Answered by hukam0685
1

Answer:

Proved

Step-by-step explanation:

Let the first term if AP is a,common difference d

Sum of first n terms

S_n =  \frac{n}{2} (2a + (n - 1)d) = p \: (let) \\  \\ 2an +  {n}^{2}d - nd = 2p \:  \: ...eq1 \\   \\ S_m =  \frac{m}{2} (2a + (m - 1)d) = p \:  \\  \\ 2am +  {m}^{2}d - md = 2p \:  \: ...eq2 \\  \\ subtract \: eq1 \: from \:  \: eq2 \\  \\ 2am +  {m}^{2}d - md - 2an -  {n}^{2}d  + nd  = 2p - 2p \\  \\ 2a(m + n) + d( {m}^{2}  -  {n}^{2}   -  (m - n)) = 0 \\  \\ (m + n)(2a + (m + n - 1)d) = 0 \\ \\ (2a + (m + n - 1)d) = 0 \:  \:  \: ..eq3\\   \\ sum \: of \: (m + n)terms \\  \\ S_{m + n} =  \frac{m + n}{2} (2a + (m + n - 1)d) \\  \\ substitute \: value \: from \: eq3 \\  \\ S_{m + n} =  \frac{m + n}{2}  \times 0 \\  \\ S_{m + n} = 0 \\  \\

Proved

Hope it helps you.

Similar questions