Math, asked by kaithayilabhijith03, 23 hours ago

please answer this question need step by step explanation and any inappropriate answer will be reported​

Attachments:

Answers

Answered by mathdude500
2

Given Question

 \sf \: If \: 3x = cosec \theta  \: and \:  \dfrac{3}{x} = cot\theta, \: then \: the \: value \: of \: 3\bigg( {x}^{2} -  \frac{1}{ {x}^{2} }\bigg) \: is

 \:  \:  \:  \:  \:  \:  \:  \: (a) \:  \: \dfrac{1}{2}

 \:  \:  \:  \:  \:  \:  \:  \: (b) \:  \: \dfrac{1}{3}

 \:  \:  \:  \:  \:  \:  \:  \: (c) \:  \: \dfrac{3}{4}

 \:  \:  \:  \:  \:  \:  \:  \: (d) \:  \: \dfrac{2}{3}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:3x = cosec\theta

and

\rm :\longmapsto\:\dfrac{3}{x} = cot\theta

We know that,

\rm :\longmapsto\: {cosec}^{2}\theta  -  {cot}^{2}\theta  = 1

\rm :\longmapsto\: {(3x)}^{2} -   {\bigg[\dfrac{3}{x} \bigg]}^{2}  = 1

\rm :\longmapsto\: {9x}^{2} - \dfrac{9}{ {x}^{2} } = 1

\rm :\longmapsto\:3\bigg(3 {x}^{2} - \dfrac{3}{ {x}^{2} }\bigg) = 1

\bf\implies \:3 {x}^{2} - \dfrac{3}{ {x}^{2} }= \dfrac{1}{3}

So, Option (b) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions