Math, asked by athishvaishu123, 2 months ago

please answer this question please​

Attachments:

Answers

Answered by sharanyalanka7
11

Answer:

X=\begin{bmatrix}3&4\\-1&7\end{bmatrix}

Step-by-step explanation:

Given,

A=\begin{bmatrix}0&-1\\1&2\end{bmatrix}

B=\begin{bmatrix}1&2\\-1&1\end{bmatrix}

X - 3B = 2A

To Find :-

Matrix 'X'

How To Do :-

As they given the condition that 'X - 3B = 2A' we need to substitute the value of the matrices 'B' and 'A' in that equation and we need to simplify them by transposing and we need to obtain the value of matrix 'X'.

Formula Required :-

1)y\begin{bmatrix}a&b\\c&d\end{bmatrix}=\begin{bmatrix}ay&by\\cy&dy\end{bmatrix}

2)\begin{bmatrix}a & b \\c & d \end{bmatrix}+\begin{bmatrix}p & q \\r & s \end{bmatrix}=\begin{bmatrix}a+p & b+q \\c+r &d+ s \end{bmatrix}

Solution :-

X - 3B = 2A

Substituting the matrices in the above equation :-

X-3\begin{bmatrix}1&2\\-1&1\end{bmatrix}=2\begin{bmatrix}0&-1\\1&2\end{bmatrix}

X-\begin{bmatrix}3\times1&3\times2\\3\times-1&3\times1\end{bmatrix}=\begin{bmatrix}2\times0&2\times-1\\2\times1&2\times2\end{bmatrix}

X-\begin{bmatrix}3&6\\-3&3\end{bmatrix}=\begin{bmatrix}0&-2\\2&4\end{bmatrix}

X=\begin{bmatrix}0&-2\\2&4\end{bmatrix}+\begin{bmatrix}3&6\\-3&3\end{bmatrix}

X=\begin{bmatrix}0+3&-2+6\\2+(-3)&4+3\end{bmatrix}

X=\begin{bmatrix}3&4\\-1&7\end{bmatrix}

\therefore X=\begin{bmatrix}3&4\\-1&7\end{bmatrix}

Answered by CopyThat
32

Answer :-

X =  \left[\begin{array}{ccc}3&4\\-1&7\end{array}\right]

Step-by-step explanation :-

Given :

If A = \left[\begin{array}{ccc}0&-1\\1&2\end{array}\right] and B = \left[\begin{array}{ccc}1&2\\-1&1\end{array}\right].

To find :

The matrix X if X - 3B = 2A.

Solution :

3B :-

3 \times  \left[\begin{array}{ccc}1&2\\-1&1\end{array}\right] = \left[\begin{array}{ccc}3&6\\-3&3\end{array}\right]

________________________________

2A :-

2 \times  \left[\begin{array}{ccc}0&-1\\1&2\end{array}\right] = \left[\begin{array}{ccc}0&-2\\2&4\end{array}\right]

________________________________

X - 3B = 2A :-

X -  \left[\begin{array}{ccc}3&6\\-3&3\end{array}\right] =  \left[\begin{array}{ccc}0&-2\\2&4\end{array}\right]

X = \left[\begin{array}{ccc}0&-2\\2&4\end{array}\right] +  \left[\begin{array}{ccc}3&6\\-3&3\end{array}\right]

X = \left[\begin{array}{ccc}(0+3)&(-2+6)\\(2+(-3))&(4+3)\end{array}\right]

∴ X = \left[\begin{array}{ccc}3&4\\-1&7\end{array}\right]

Verification :

X - 3B = 2A

\left[\begin{array}{ccc}3&4\\-1&7\end{array}\right] -  \left[\begin{array}{ccc}3&6\\-3&3\end{array}\right] =  \left[\begin{array}{ccc}0&-2\\2&4\end{array}\right]

\left[\begin{array}{ccc}(3-3)&(4-6)\\(-1)-(-3)&(7-4)\\\end{array}\right]

 \left[\begin{array}{ccc}0&-2\\2&4\end{array}\right] =   \left[\begin{array}{ccc}0&-2\\2&4\end{array}\right]

∴ L.H.S = R.H.S

Similar questions