Physics, asked by ayushsinghals09, 4 months ago

please answer this question please please​

Attachments:

Answers

Answered by shadowsabers03
7

Assume the current flows through the cylinder outside the plane, towards to us.

By Ampere's Circuital Law, the magnetic field due to the large cylinder at Q is given by,

\sf{\longrightarrow B_1\cdot2\pi(2R)=\mu_0I}

Here \sf{I=\pi R^2J.} Then,

\sf{\longrightarrow B_1\cdot4\pi R=\mu_0\pi R^2J}

\sf{\longrightarrow B_1=\dfrac{\mu_0JR}{4}}

This field acts along y direction. So in vector form,

\longrightarrow\vec{\sf{B_1}}=\sf{\dfrac{\mu_0JR}{4}\ \hat j}

The magnetic field due to the upper cavity is acting at Q as the following.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\put(0,0){\line(0,1){15}}\put(60,0){\line(-4,1){60}}\qbezier(48,0)(49,2)(50,2.5)\put(60,0){\vector(1,4){5}}\multiput(60,0)(0,5.72){4}{\line(0,1){2.86}}\qbezier(60,8.4)(61,8)(61.4,6.5)\multiput(44,0.5)(16.5,10){2}{$\theta$}\put(0,0.2){\framebox(1.5,1.5)}\put(60,0){\circle*{1}}\footnotesize\put(-5,6){$\sf{\dfrac{R}{2}}$}\put(27.5,-4){\sf{2R}}\put(27.5,12){$\sf{\dfrac{R}{2}\sqrt{17}}$}\put(66,20){$\vec{\sf{B_2}}$}\put(61,-4){\sf{Q}}\put(-3,-4){\sf{O}}\put(-3,17){\sf{M}}\end{picture}

O is center of the large cylinder and M is center of the upper cavity.

By Ampere's Circuital Law, this magnetic field is given by,

\sf{\longrightarrow B_2\cdot2\pi\left(\dfrac{R}{2}\sqrt{17}\right)=\mu_0I'}

where \sf{I'} is the current through upper or lower cavity given by,

  • \sf{I'=\pi\left(\dfrac{R}{2}\right)^2J=\dfrac{\pi R^2J}{4}}

So,

\sf{\longrightarrow B_2\pi R\sqrt{17}=\dfrac{\mu_0\pi R^2J}{4}}

\sf{\longrightarrow B_2=\dfrac{\mu_0JR}{4\sqrt{17}}}

In vector form, from the figure,

\longrightarrow\vec{\sf{B_2}}=\sf{\dfrac{\mu_0JR}{4\sqrt{17}}\left(\sin\theta\,\hat i+\cos\theta\,\hat j\right)}

The magnetic field due to the lower cavity is acting at Q as the following.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\put(0,0){\line(0,-1){15}}\put(60,0){\line(-4,-1){60}}\qbezier(48,0)(49,-2)(50,-2.5)\put(60,0){\vector(-1,4){5}}\multiput(60,0)(0,5.72){4}{\line(0,1){2.86}}\qbezier(59.9,8.4)(58.9,8)(58.5,6.5)\multiput(44,-3.5)(13.5,14){2}{$\theta$}\put(0,-1.5){\framebox(1.5,1.5)}\put(60,0){\circle*{1}}\footnotesize\put(-5,-10){$\sf{\dfrac{R}{2}}$}\put(27.5,2){\sf{2R}}\put(27.5,-14){$\sf{\dfrac{R}{2}\sqrt{17}}$}\put(50,20){$\vec{\sf{B_3}}$}\put(61,-4){\sf{Q}}\put(-3,2){\sf{O}}\put(-3,-19){\sf{N}}\end{picture}

N is center of the lower cavity.

The field \vec{\sf{B_3}} has same magnitude of \vec{\sf{B_2}}. From the figure,

\longrightarrow\vec{\sf{B_3}}=\sf{\dfrac{\mu_0JR}{4\sqrt{17}}\left(-\sin\theta\,\hat i+\cos\theta\,\hat j\right)}

Now, the net magnetic field at Q is,

\longrightarrow\vec{\sf{B}}=\vec{\sf{B_1}}-\vec{\sf{B_2}}-\vec{\sf{B_3}}

\longrightarrow\vec{\sf{B}}=\sf{\dfrac{\mu_0JR}{4}\ \hat j-\dfrac{\mu_0JR}{4\sqrt{17}}\left(\sin\theta\,\hat i+\cos\theta\,\hat j-\sin\theta\,\hat i+\cos\theta\,\hat j\right)}

\longrightarrow\vec{\sf{B}}=\sf{\dfrac{\mu_0JR}{4}\ \hat j-\dfrac{2\mu_0JR}{4\sqrt{17}}\cos\theta\,\hat j}

From the figure,

\longrightarrow\vec{\sf{B}}=\sf{\dfrac{\mu_0JR}{4}\ \hat j-\dfrac{\mu_0JR}{2\sqrt{17}}\cdot\dfrac{2R}{\left(\dfrac{R}{2}\sqrt{17}\right)}\,\hat j}

\longrightarrow\vec{\sf{B}}=\sf{\dfrac{\mu_0JR}{4}\ \hat j-\dfrac{\mu_0JR}{2\sqrt{17}}\cdot\dfrac{4}{\sqrt{17}}\,\hat j}

\longrightarrow\vec{\sf{B}}=\sf{\dfrac{\mu_0JR}{4}\ \hat j-\dfrac{2\mu_0JR}{17}\,\hat j}

\longrightarrow\vec{\sf{B}}=\sf{\dfrac{9}{68}\,\mu_0JR\,\hat j}

Hence,

\sf{\longrightarrow\underline{\underline{\alpha=9}}}

Similar questions