Math, asked by ruhinigam369, 8 months ago

please answer this question .. please please please please please please please please please please please please please please please please​

Attachments:

Answers

Answered by BrainlyPopularman
22

GIVEN :

 \:\: \bf \tan( \theta) =  \dfrac{2x - k}{k \sqrt{3} }

  \:  \: \bf \tan( \phi) =  \dfrac{x \sqrt{3} }{2k - x}

TO PROVE :

  \:  \: \bf | \phi-\theta |  = {30}^{\circ}

SOLUTION :

• We know that –

  \:  \: \bf  \implies \large{ \boxed{ \bf \tan(x - y)  = \dfrac{ \tan(x) -  \tan(y)}{1 +  \tan(x) \tan(y)}}}

• So that –

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \tan( \theta) -  \tan( \phi)}{1 +  \tan( \theta) \tan( \phi)}

• Now put the values –

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{2x - k}{k \sqrt{3} } - \dfrac{x \sqrt{3} }{2k - x} }{1 + \left(\dfrac{2x - k}{k \sqrt{3} } \right)   \left(\dfrac{x \sqrt{3} }{2k - x} \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{(2x - k)(2k - x) - (k \sqrt{3})(x \sqrt{3} ) }{(k \sqrt{3})(2k - x)}}{1 + \left(\dfrac{2x - k}{k} \right)   \left(\dfrac{x}{2k - x} \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{4kx - 2 {x}^{2} - 2 {k}^{2} + kx-3kx}{(k \sqrt{3})(2k - x)}}{1 + \left(\dfrac{2 {x}^{2} - kx}{2 {k}^{2} - kx } \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ \left(\dfrac{2 {k}^{2} - kx + 2 {x}^{2} - kx}{2 {k}^{2} - kx } \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ \left(\dfrac{2 {k}^{2} - 2kx + 2 {x}^{2} }{2 {k}^{2}  - kx } \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{  - \left(\dfrac{ - 2 {k}^{2}  + 2kx  -  2 {x}^{2} }{2 {k}^{2}  - kx } \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  = \dfrac{ \dfrac{1}{(k \sqrt{3})(2k - x)}}{  - \left(\dfrac{1}{2 {k}^{2}  - kx } \right)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  =  - \dfrac{2 {k}^{2}  - kx}{(k \sqrt{3})(2k - x)}

  \:  \: \bf  \implies \tan( \theta-  \phi)  =  - \dfrac{k \cancel{(2k- x)}}{(k \sqrt{3}) \cancel{(2k - x)}}

  \:  \: \bf  \implies \tan( \theta-  \phi)  =  - \dfrac{ \cancel k}{\cancel k \sqrt{3}}

  \:  \: \bf  \implies \tan( \theta-  \phi)  =  - \dfrac{1}{\sqrt{3}}

  \:  \: \bf  \implies \tan( \theta-  \phi)  =  - \tan( {30}^{ \circ} )

  \:  \: \bf  \implies \tan( \theta-  \phi)  =  \tan( - {30}^{ \circ} ) \:\:\:\:\:\:\:\:\:[ \:  \: \because  \:  \: \tan (  - \theta )  =  -  \tan( \theta) ]\:

  \:  \: \bf  \implies ( \theta-\phi)  =  ( - {30}^{ \circ} )

  \:  \: \bf  \implies  | \theta-\phi |   =   | - {30}^{ \circ} |

  \:  \: \bf  \implies \large{ \boxed{ \bf |\phi- \theta | = {30}^{ \circ}}}

  \:  \:  \:  \:  \: \bf { \underbrace{ \bf Hence \:  \:  \: proved}}

Answered by sanchitachauhan241
12

{\sf{\underline{\underline{\pink{GIVEN :–}}}}}

\:\: \bf \tan( \theta) = \dfrac{2x - k}{k \sqrt{3} }tan(θ)

\: \: \bf \tan( \phi) = \dfrac{x \sqrt{3} }{2k - x}tan(ϕ)

{\sf{\underline{\underline{\pink{TO\  PROVE :–}}}}}

\: \: \bf | \phi-\theta | = {30}^{\circ}

{\sf{\underline{\underline{\pink{SOLUTION :–}}}}}

{\sf{\underline{\underline{\pink{ We \  know \  that –}}}}}

\: \: \bf \implies \large{ \boxed{ \bf \tan(x - y) = \dfrac{ \tan(x) - \tan(y)}{1 + \tan(x) \tan(y)}}}

{\sf{\underline{\underline{\pink{So\  that –}}}}}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \tan( \theta) - \tan( \phi)}{1 + \tan( \theta) \tan( \phi)}

{\sf{\underline{\underline{\pink{Now \  put \  the \  values –}}}}}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2x - k}{k \sqrt{3} } - \dfrac{x \sqrt{3} }{2k - x} }{1 + \left(\dfrac{2x - k}{k \sqrt{3} } \right) \left(\dfrac{x \sqrt{3} }{2k - x} \right)}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{(2x - k)(2k - x) - (k \sqrt{3})(x \sqrt{3} ) }{(k \sqrt{3})(2k - x)}}{1 + \left(\dfrac{2x - k}{k} \right) \left(\dfrac{x}{2k - x} \right)}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{4kx - 2 {x}^{2} - 2 {k}^{2} + kx-3kx}{(k \sqrt{3})(2k - x)}}{1 + \left(\dfrac{2 {x}^{2} - kx}{2 {k}^{2} - kx } \right)}

 ¬\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ \left(\dfrac{2 {k}^{2} - kx + 2 {x}^{2} - kx}{2 {k}^{2} - kx } \right)}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ \left(\dfrac{2 {k}^{2} - 2kx + 2 {x}^{2} }{2 {k}^{2} - kx } \right)}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{2kx - 2 {x}^{2} - 2 {k}^{2}}{(k \sqrt{3})(2k - x)}}{ - \left(\dfrac{ - 2 {k}^{2} + 2kx - 2 {x}^{2} }{2 {k}^{2} - kx } \right)}

\: \: \bf \implies \tan( \theta- \phi) = \dfrac{ \dfrac{1}{(k \sqrt{3})(2k - x)}}{ - \left(\dfrac{1}{2 {k}^{2} - kx } \right)}

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{2 {k}^{2} - kx}{(k \sqrt{3})(2k - x)}

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{k \cancel{(2k- x)}}{(k \sqrt{3}) \cancel{(2k - x)}}

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{ \cancel k}{\cancel k \sqrt{3}}

\: \: \bf \implies \tan( \theta- \phi) = - \dfrac{1}{\sqrt{3}}

\: \: \bf \implies \tan( \theta- \phi) = - \tan( {30}^{ \circ} )

\: \: \bf \implies \tan( \theta- \phi) = \tan( - {30}^{ \circ} ) \:\:\:\:\:\:\:\:\:[ \: \: \because \: \: \tan ( - \theta ) = - \tan( \theta) ]\:

\: \: \bf \implies ( \theta-\phi) = ( - {30}^{ \circ} )

\: \: \bf \implies | \theta-\phi | = | - {30}^{ \circ}

\: \: \bf \implies \large{ \boxed{ \bf |\phi- \theta | = {30}^{ \circ}}}

\: \: \: \: \: \bf { \underbrace{ \bf Hence \: \: \: proved}}

Similar questions