Math, asked by leenaguptaldh, 19 days ago

please answer this question

Please take it seriously
otherwise you will be reported.
please ​

Attachments:

Answers

Answered by mathdude500
34

\large\underline{\sf{Solution-}}

Calculation of Mean using Step Deviation Method

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 0 - 20&\sf 17&\sf10&\sf - 1&\sf - 17\\\\\sf 20 - 40 &\sf 2&\sf30 - A&\sf 0&\sf 0\\\\\sf 40-60 &\sf 32 &\sf50&\sf1&\sf32\\\\\sf 60 - 80&\sf y&\sf70&\sf2&\sf2y\\\\\sf 80-100&\sf 19&\sf90&\sf3&\sf57\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Given that,

\rm \:  \sum \: f_i = 120

\rm \: 68 + x + y = 120

\rm \: x + y = 120 - 68

\rm\implies \:x + y = 52 -  -  -  - (1)

Now, From frequency distribution table, we have

\rm \: A = 30

\rm \:  \sum \: f_i u_i= 2y + 72

\rm \: h = 20

\rm \: Mean = 50

Now, We know, Mean using Step Deviation Method is given by

\boxed{\tt{  \:  \: Mean \:  = \:  A \:  + \: h \:  \times  \:  \dfrac{\sum f_iu_i}{\sum f_i} \:  \: }} \\

So, on Substituting all the values, we get

\rm \: 50 = 30 + 20 \times \dfrac{72 + 2y}{120}

\rm \: 50 - 30  =   \dfrac{72 + 2y}{6}

\rm \: 20  =   \dfrac{72 + 2y}{6}

\rm \: 72 + 2y = 120

\rm \: 2y = 120  - 72

\rm \: 2y = 48

\rm\implies \:y = 24

On substituting the value of y in equation (1), we get

\rm \:x +  24 = 52

\rm \:x  = 52 - 24

\rm\implies \:x = 28

Hence,

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\bf{x = 28}  \\ \\ &\bf{y = 24} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. Mean using Direct Method is given by

\boxed{\tt{  \:  \: Mean \: or\: \sf \overline{x} =  \dfrac{\sum f_ix_i}{\sum f_i} \:  \: }} \\

2. Mean Using Short Cut Method is given by

\boxed{\tt{  \:  \: Mean \: or \: \sf \overline{x} = A + \dfrac{\sum f_id_i}{\sum f_i} \:  \:where \: d \:  =  \: x_i  \:  -  \: A}} \\

Answered by Itzheartcracer
26

Given :-

\begin{center}\begin{tabular}{ c c c } \sf Class & \sf Frequency\\\sf  0-20 &\sf 17\\ \sf 20-40&\sf x\\\sf 40-60&\sf 32\\\sf 60-80&\sf y\\\sf 80-100&\sf 19 \\\sf Total&\sf 120  \end{tabular}\end{center}

To Find :-

Value of x and y

Solution :-

\begin{center}\begin{tabular}{ c c c } \sf Class & \sf Frequency(x_1)&Mid-Value(y_1)\\\sf  0-20 &\sf 17&\sf 10\\ \sf 20-40&\sf x&30\\\sf 40-60&\sf 32&\sf 50\\\sf 60-80&\sf y&\sf 70\\\sf 80-100&\sf 19&\sf 90 \\\sf &\sf 68 + x + y = 120 \end{tabular}\end{center}

Since,

68 + x + y = 120

x + y = 120 - 68

x + y = 52 (1)

Now Finding Sum

\begin{center}\begin{tabular}{ c c c } \sf \sf Frequency(x_1)&Mid-Value(y_1)&  \sum \sf f_ix_i\\\sf 17&\sf 10&\sf 170\\\sf x&30&\sf 30x\\\sf 32&\sf 50&\sf 1600\\\sf y&\sf 70&\sf 70y\\\sf 19&\sf 90&\sf 1710 \\\ &&\sf Total = 3480+30x+70y \end{tabular}\end{center}

Now

Mean = Σfixi/Σfi

50 = 3480 + 30x + 70y/120

50 × 120 = 3480 + 30x + 70y

6000 = 3480 + 30x + 70y

6000 - 3480 = 30x + 70y

2520 = 30x  + 70y

2520/10 = 30x/10 + 70y/10

252 = 3x + 7y (2)

On multiplying Eq. 1 by 3

3(x + y) = 3(52)

3x + 3y = 156 (3)

On subtracting 2 and 3

156 - 252 = 3x + 3y - 3x - 7y

-96 = 3y - 7y

-96 = -4y

96 = 4y

96/4 = y

24 = y

From 1

x + y = 52

x + 24 = 52

x = 52 - 24

x = 28

Similar questions