Physics, asked by AestheticSky, 1 month ago

please answer this question !

Proper explanation is very much required !! ​

Attachments:

Answers

Answered by FiercePrince
19

\frak{Given}\:\begin{cases} \:\quad \sf Force \:acting \:on \:particle \:is \:\pmb{\frak{ Be^{-Ct} }}\:\\ \:\quad \sf Mass \:is\:\pmb{\frak{ m }}\:.\\ \:\quad \sf Velocity \:is \:\pmb{\frak{0\:}}\:at\:t\:=\:\pmb{\frak{0\:s}}\:. \:\end{cases}\:\\\\

Need To Find : It's Terminal Velocity ( Velocity after a long times ) ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad\twoheadrightarrow \sf \: F \:=\: Be^{-Ct}\:\\

\dag\underline {\frak{ As \:We \:know \:that \:\::\:}}\\\\

\qquad \dashrightarrow \:\pmb{\pink{\sf \: F\:=\: m a\:}}\\

Where ,

  • F = Force acting on Particle ,
  • m = Mass of Particle &
  • a = Acceleration of Particle.

\qquad \therefore\sf  \: ma \: =\: Be^{-Ct}\:\:\\\\

\qquad \twoheadrightarrow \:\sf  ma \: =\: Be^{-Ct}\:\:\\\\

\qquad \twoheadrightarrow \: \sf a \: =\:\dfrac{ Be^{-Ct}}{m}\:\:\\\\

\dag\underline {\frak{ As \:We \:know \:that \:\::\:}}\\\\

\qquad \dashrightarrow \:\pmb{\pink{\sf \: Acceleration \:=\: \dfrac{dv}{dt}\:}}\\

\qquad \therefore \: \sf \dfrac{dv}{dt} \: =\: \dfrac{1}{m} \:Be^{-Ct}\:\:\\\\

\qquad \twoheadrightarrow \sf \: \dfrac{dv}{dt} \: =\: \dfrac{1}{m} \:Be^{-Ct}\:\:\\\\

\qquad \twoheadrightarrow \sf \: dv \: =\: \dfrac{1}{m} \:Be^{-Ct}\:dt\:\\\\

\qquad \bigstar \:\underline {\pmb{\purple { \sf By \:integrating \:both \:sides\:,\:we\:get\:,}}}\\

\qquad \twoheadrightarrow \sf \: dv \: =\: \dfrac{1}{m} \:Be^{-Ct}\:dt\:\\\\

\qquad \twoheadrightarrow \sf \:\int dv \: =\:\int \dfrac{1}{m} \:Be^{-Ct}\:dt\:\\\\

\qquad \twoheadrightarrow \sf \:\int dv \: =\:\int \dfrac{1}{m} \:Be^{-Ct}\:dt\:\\\\

\qquad \twoheadrightarrow \sf \:v(t) \: =\:- \dfrac{B}{mC} \:e^{-Ct}\:+\:K\:\\\\

\frak{At}\:\begin{cases} \:\quad \sf t\:(\:or \:Time \:) \:\pmb{\frak{ 0\:s }}\:\&\:\\  \:\quad \sf Velocity \:is \:\pmb{\frak{0\:}}\: \:\end{cases}\:\\\\

\qquad \twoheadrightarrow \sf K \:=\:\dfrac{B}{mC} \\\\

\qquad \twoheadrightarrow \sf\pmb{\pink{ K \:=\:\dfrac{B}{mC}}}\\\\

Terminal Velocity [ Velocity after long time ] :

\qquad \twoheadrightarrow \sf \:v(t) \: =\:- \dfrac{B}{mC} \:e^{-Ct}\:+\:K\:\\\\

\qquad \twoheadrightarrow \sf \:v(t) \: =\:- \dfrac{B}{mC} \:e^{-Ct}\:+\:\dfrac{B}{mC}\:\\\\

\qquad \twoheadrightarrow \sf \:v(t) \: =\:- \dfrac{B}{mC} \:\big\{ 1 - \:e^{-Ct} \:\big\}\:\:\\\\

\qquad \twoheadrightarrow \sf \:v(t) \: =\: \dfrac{B}{mC}\:\\\\

\qquad \twoheadrightarrow \sf\underline{\pmb{\boxed{\pink{\frak{ Terminal \:Velocity \:=\:v_t\:\:=\:\dfrac{B}{mC}}}}}}\:\:\bigstar \\\\

\qquad \therefore \:\sf Hence, \:Terminal \:Velocity \:is \:\: \pmb{\sf Option \:B \:)\:\dfrac{B}{mC}\:}.\\

Answered by singhjatinbeer
1

Answer:

Given⎩⎨⎧ForceactingonparticleisBe−CtBe−CtMassismm.Velocityis00att=0s0s.

Need To Find : It's Terminal Velocity ( Velocity after a long times ) ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

↠�=��−��↠F=Be−Ct

†���������ℎ��:‾†AsWeknowthat:

⇢�=��⇢F=maF=ma

Where ,

F = Force acting on Particle ,m = Mass of Particle &a = Acceleration of Particle.

∴��=��−��∴ma=Be−Ct

↠��=��−��↠ma=Be−Ct

↠�=��−���↠a=mBe−Ct

†���������ℎ��:‾†AsWeknowthat:

⇢������������=����⇢Acceleration=dtdvAcceleration=dtdv

∴����=1���−��∴dtdv=m1Be−Ct

↠����=1���−��↠dtdv=m1Be−Ct

↠��=1���−����↠dv=m1Be−Ctdt

★����������������ℎ�����,�����,‾★Byintegratingbothsides,weget,Byintegratingbothsides,weget,

↠��=1���−����↠dv=m1Be−Ct

Explanation:

so it's been two years you are using brainly

hope it helps you

would you like to be my friend

Similar questions