Math, asked by provati68, 1 month ago

Please answer this question properly using all the symbols and all.

Attachments:

Answers

Answered by MasterDhruva
10

Answer

\sf \leadsto \dfrac{3 \dfrac{1}{5} + 2 \dfrac{7}{11}}{4 \dfrac{7}{10} - 1 \dfrac{17}{22}} \div \dfrac{5}{11 + \dfrac{7}{8 + 2 \dfrac{1}{2}}} - 4 \dfrac{5}{7 \dfrac{2}{3}}

\sf \leadsto \dfrac{\dfrac{16}{5} + \dfrac{29}{11}}{\dfrac{47}{10} - \dfrac{39}{22}} \div \dfrac{5}{11 + \dfrac{7}{8 + \dfrac{5}{2}}} - 4 \dfrac{5}{\dfrac{23}{3}}

\sf \leadsto \dfrac{\dfrac{176}{55} + \dfrac{145}{55}}{\dfrac{517}{110} - \dfrac{195}{110}} \div \dfrac{5}{11 + \dfrac{7}{11 + \dfrac{16 + 5}{2}}} - 4 \bigg( \dfrac{5}{23} \times \dfrac{1}{3} \bigg)

\sf \leadsto \dfrac{\dfrac{321}{55}}{\dfrac{322}{110}} \div \dfrac{5}{11 + \dfrac{7}{\dfrac{21}{2}}} - 4 \dfrac{5}{69}

\sf \leadsto \bigg( \dfrac{321}{55} \div \dfrac{322}{110} \bigg) \div \dfrac{5}{11 + \dfrac{7}{21} \times \dfrac{1}{2}} - \dfrac{281}{69}

\sf \leadsto \bigg( \dfrac{321}{55} \times \dfrac{110}{322} \bigg) \div \dfrac{5}{11 + \dfrac{7}{42}} - \dfrac{281}{69}

\sf \leadsto \dfrac{642}{322} \div \dfrac{5}{\dfrac{462 + 7}{42}} - \dfrac{281}{69}

\sf \leadsto \dfrac{642}{322} \div \dfrac{5}{\dfrac{469}{42}} - \dfrac{281}{69}

\sf \leadsto \dfrac{642}{322} \div \bigg( \dfrac{5}{469} \times \dfrac{1}{42} \bigg) - \dfrac{281}{69}

\sf \leadsto \dfrac{642}{322} \div \dfrac{5}{19698} - \dfrac{282}{69}

\sf \leadsto \dfrac{642}{322} \times \dfrac{19698}{5} - \dfrac{281}{69}

\sf \leadsto \dfrac{2646116}{1610} - \dfrac{281}{69}

\sf \leadsto \dfrac{6323058}{805} - \dfrac{281}{69}

\sf \leadsto \dfrac{18969174}{2415} - \dfrac{9835}{2415}

\sf \leadsto \dfrac{18959789}{2415}

Therefore, the answer obtained while simplifying this is \sf \dfrac{18959789}{2415}.


IntrovertLeo: Awesome!! ^0^
MasterDhruva: Thank u ^_^
Similar questions