Math, asked by fishes499, 8 months ago

Please answer this question:Q1. ABCD is a rhombus in which altitude from D to side BC bisects BC. Find all the angles of the rhombus.

Answers

Answered by amanpatel15
3

Answer:

Given that ABCD is a Rhombus and DE is the altitude on AB then AE = EB.

In a ΔAED and ΔBED,

DE = DE ( common line)

∠AED = ∠BED ( right angle)

AE = EB ( DE is an altitude)

∴ ΔAED ≅ ΔBED ( SAS property)

∴ AD = BD ( by C.P.C.T)

But AD = AB ( sides of rhombus are equal)

⇒ AD = AB = BD

∴ ABD is an equilateral traingle.

∴ ∠A = 60°

⇒ ∠A = ∠C = 60° (opposite angles of rhombus are equal)

But Sum of adjacent angles of a rhombus is supplimentary.

∠ABC + ∠BCD = 180°

⇒ ∠ABC + 60°= 180°

⇒ ∠ABC = 180° - 60° = 120°.

∴ ∠ABC = ∠ADC = 120°. (opposite angles of rhombus are equal)

∴ Angles of rhombus are ∠A = 60° and ∠C = 60° , ∠B = ∠D = 120°.

hope you like the answer please mark me as brainliest and please follow me so that I can answer any questions quickly ☺️☺️

Similar questions