please answer this question quickly
Attachments:
Answers
Answered by
2
Answer:
x+y=10
squaring both sides
(x+y)²= 10²
x²+y²+2xy=100
68+2xy=100
2xy=100-68
2xy=32
xy=32÷2
xy=16
Answered by
2
Question :-
If x + y = 10 and x² + y² = 68. Then xy = ?
Answer :-
The value of xy is 16.
Step-by-step explanation:
To Find :-
- The value of xy.
Given that,
- x + y = 10
- x² + y² = 68.
★ Solution
⇒ x + y = 10
By squaring each side
⇒ (x + y)² = (10)²
⇒ (x + y)² = 100
Using the algebraic identity of [(x+y)² = x²+y²+2xy], We get.
⇒ x² + y² + 2xy = 100
As given per question, [x² + y² = 68],
⇒ 68 + 2xy = 100
Transposing 68 to R.H.S,
⇒ 2xy = 100 - 68
⇒ 2xy = 32
⇒ xy = 32/2
⇒ xy = 16
Hence, The value of xy is 16.
______________________________
V E R I F I C A T I O N :-
- (x + y)² = (10)²
⇒ (x + y)² = (10)²
⇒ (x + y)² = 100
⇒ x² + y² + 2xy = 100
⇒ 68 + 2*16 = 100
⇒ 68 + 32 = 100
⇒ 100 = 100
L.H.S = R.H.S
Hence, Verified!
Similar questions
Math,
1 month ago
English,
1 month ago
Social Sciences,
1 month ago
English,
2 months ago
Science,
10 months ago
CBSE BOARD X,
10 months ago