Math, asked by johnabhram99907, 7 months ago

please answer
this question refer to the attachment

Attachments:

Answers

Answered by BrainlyIAS
8

\sf \dfrac{1}{\sqrt{7}-\sqrt{6}}+\dfrac{1}{\sqrt{7}-2}

______________________________

Let's rationalize the 1st term ( denominator ) ,

\to \sf \dfrac{1}{\sqrt{7}-\sqrt{6}}\times \dfrac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}\\\\

  • ( a + b ) ( a - b ) = a² - b²

\to \sf \dfrac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^2-(\sqrt{6})^2}

\to \sf \dfrac{\sqrt{7}+\sqrt{6}}{7-6}\\\\\to \sf \dfrac{\sqrt{7}+\sqrt{6}}{1}\\\\\to \sf \sqrt{7}+\sqrt{6}\ \; \bigstar

_______________________________

Let's rationalize the 2nd term ( denominator ) ,

\to \sf \dfrac{1}{\sqrt{7}-2}\times \dfrac{\sqrt{7}+2}{\sqrt{7}+2}

  • ( a - b ) ( a + b ) = a² - b²

\to \sf \dfrac{\sqrt{7}+2}{(\sqrt{7})^2-(2)^2}\\\\\to \sf \dfrac{\sqrt{7}+2}{7-4}\\\\\to \sf \dfrac{\sqrt{7}+2}{3}\ \; \bigstar

_______________________________

Let's add both to get our answer ,

\to \sf \sqrt{7}+\sqrt{6}+\dfrac{\sqrt{7}+2}{3}\\\\\to \sf \dfrac{3\sqrt{7}+3\sqrt{6}+\sqrt{7}+2}{3}\\\\\leadsto \sf \pink{\dfrac{4\sqrt{7}+3\sqrt{6}+2}{3}}\ \; \bigstar

Answered by Anonymous
103

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\bf{Rationalise\:\:the\:\:denominator\:\:of\:\::\dfrac{1}{\sqrt{7}-\sqrt{6}}+\dfrac{1}{\sqrt{7}-2}}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\bf{\dfrac{4\sqrt{7}+3\sqrt{6}+2}{3}}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

→ Rationalise the first term \sf{\dfrac{1}{\sqrt{7}-\sqrt{6}}}

\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}

=\dfrac{1\cdot \left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}

1\cdot \left(\sqrt{7}+\sqrt{6}\right)=\sqrt{7}+\sqrt{6}

\sf{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)=1}

=\dfrac{\sqrt{7}+\sqrt{6}}{1}

\bf{=\sqrt{7}+\sqrt{6}}

_________________________

→ Rationalise the second term \sf{\dfrac{1}{\sqrt{7}-2}}

\mathrm{Multiply\:by\:the\:conjugate}\:\dfrac{\sqrt{7}+2}{\sqrt{7}+2}

=\dfrac{1\cdot \left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}

1\cdot \left(\sqrt{7}+2\right)=\sqrt{7}+2

\sf{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right) = 3}

\bf{=\dfrac{\sqrt{7}+2}{3}}

_________________________

→ It's time to add

\sf{\sqrt{7}+\sqrt{6}+\dfrac{\sqrt{7}+2}{3}}

\mathrm{Convert\:element\:to\:fraction}:\quad \sqrt{7}=\dfrac{\sqrt{7}\cdot \:3}{3},\:\sqrt{6}=\dfrac{\sqrt{6}\cdot \:3}{3}

=\dfrac{\sqrt{7}\cdot \:3}{3}+\dfrac{\sqrt{6}\cdot \:3}{3}+\dfrac{\sqrt{7}+2}{3}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{\sqrt{7}\cdot \:3+\sqrt{6}\cdot \:3+\sqrt{7}+2}{3}

\boxed{\bf{=\dfrac{4\sqrt{7}+3\sqrt{6}+2}{3}}}

Similar questions