Math, asked by sofiabrandani25, 10 months ago

Please answer this question showing your solving step-by-step

The answers are -2/3 and 1

Only answer question 18)

Attachments:

Answers

Answered by MOSFET01
4

Solution :

\dfrac{2}{x}\: + \: \dfrac{2}{x\: + \: 1}\: = \: 3

\dfrac{2(x\: + \: 1)\: + \: 2(x)}{x(x+1)} \: = \: 3

\dfrac{2x \: + \: 2 \: + \: 2x}{x^{2} \: + \: x}\: = \: 3

 4x \: + \: 2\: = \: 3[x^{2}\: + \: x]

 4x \: + \: 2\: = \: 3x^{2}\: + \: 3x

 3x^{2}\: + \: 3x \: = \: 4x \: + \: 2

 3x^{2}\: + \: 3x\: -\:  4x \: - \: 2 \: = \:0

 3x^{2} \: - \: x \: -\: 2 \: = \: 0

 3x^{2} \: -\: 3x \: +\: 2x \: -\: 2\: = \: 0

 3x(x\: - \: 1)\: +\:2(x\: -\: 1) \: = \: 0

 (3x\: + \: 2)(x\: - \: 1)\: = \: 0

Now,

First pair

 3x \: + \: 2 \: = \: 0

 x \: = \: \dfrac{-2}{3}

Second pair

 x \: - \: 1\: = \: 0

 x \: = \: 1

Answers

\boxed{ x \: = \: \dfrac{-2}{3}}

\boxed{x \: = \: 1}

Similar questions