Math, asked by kusuma4kumar, 3 months ago

please answer this question step by step and fast ​

Attachments:

Answers

Answered by Anonymous
3

Answer:

Let x is added

So

x +  \frac{ - 5}{8}  =  \frac{5}{9}  \\ x =  \frac{5}{9}  -  \binom{ - 5}{8}  \\ x =  \frac{5}{9}  +  \frac{5}{8}  \\ x =  \frac{40 + 45}{72} \\ x =  \frac{85}{72}

Answered by Anonymous
18

Let the required number be x.

━━━━━━━━━━━━━━━━━━━━

According to the question

\tt\longrightarrow{\blue{\bigg( \dfrac{-5}{8} \bigg) + x = \dfrac{5}{9}}}

\tt\longrightarrow{\dfrac{-5}{8} + x = \dfrac{5}{9}}

\tt\longrightarrow{\dfrac{-5 + 8x}{8} = \dfrac{5}{9}}

\tt\longrightarrow{8x - 5 = \dfrac{5 \times 8}{9}}

\tt\longrightarrow{8x - 5 = \dfrac{40}{9}}

\tt\longrightarrow{8x = \dfrac{40}{9} + 5}

\tt\longrightarrow{8x = \dfrac{40 + 45}{9}}

\tt\longrightarrow{8x = \dfrac{85}{9}}

\tt\longrightarrow{x = \dfrac{85}{9 \times 8}}

\bf\longrightarrow{x = \dfrac{85}{72}}

We can solve this question with a simple method also...

\tt\longrightarrow{\blue{\dfrac{-5}{8} + x = \dfrac{5}{9}}}

\tt\longrightarrow{x = \dfrac{5}{9} + \dfrac{5}{8}}

\tt\longrightarrow{x = \dfrac{40 + 45}{72}}

\bf\longrightarrow{x = \dfrac{85}{72}}

Hence,

  • The required number is \sf{\dfrac{85}{72}}.
Similar questions