Math, asked by msasai2018, 4 months ago

please answer this question with steps​

Attachments:

Answers

Answered by Trix88
0

Step-by-step explanation:

= (3⁵-⁸)×3-⁵

= 3³×3-⁵= 3-²

Hope this helps...

Answered by IntrovertLeo
10

Required Answer:

\underline{\bf{\bullet \: Given:-}}

\bf{( 3^5 \div 3^8)^5 \times 3^{-5}}

\underline{\bf{\bullet \: What \: To \: Do:-}}

We have to simplify the expression.

\underline{\bf{\bullet \: Solution:-}}

( 3^5 \div 3^8)^5 \times 3^{-5}

Also written as,

\Rightarrow \bigg( \dfrac{3^5}{ 3^8} \bigg)^5 \times 3^{-5}

Since the powers are the same in brackets.

\Rightarrow ( 3^{5-8})^5 \times 3^{-5}

Subtract the powers in brackets,

\Rightarrow ( 3^{-3})^5 \times 3^{-5}

Multiply -3 by 5,

\Rightarrow  3^{-15} \times 3^{-5}

Since the powers are the same,

\Rightarrow  3^{-15+ (-5)}

Add the powers,

\Rightarrow  3^{-20}

Since there is a negative sign in the exponent,

\Rightarrow \dfrac{1}{3^{20}}

\boxed{\bf \therefore Thus, the \: answer \: is \: \dfrac{1}{3^{20}}.}

\underline{\bf{\bullet \: Laws \: of \: Exponent:-}}

1. \: a^m \times a^n = a^{m+n} \\ 2. \: (a^m)^n = a^{mn} \\ 3. \: (ab)^n = a^n b ^n \\ 4. \: \bigg( \dfrac{a}{b} \bigg) ^n = \dfrac{a^n}{b^n} \\ 5. \: a^m \div a^n = a^{m - n} \\ 6. \: a^{-1} = \dfrac{1}{a} \\ 7. \: a^{-m} = \dfrac{1}{a^{m}} \\ 8. \: a^1 = a \\ 9. \: a^0 = 1

Similar questions