Math, asked by Anonymous, 1 month ago

Please answer this question . wrong answer will be reported​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have

A =  \left[  \begin {array}{c} 4 &0 & - 1 \end{array} \right] \:  \:  \: B =   \left[  \begin {array}{r} 2 &3 & - 2 \end{array} \right]

 \implies \: A B=  \left[  \begin {array}{c} 4 &0 & - 1 \end{array} \right]   \left[  \begin {array}{r} 2 &3 & - 2 \end{array} \right] = \left[  \begin {array}{c} 4 \times 2 + 0 \times 3 + ( - 1) \times ( - 2) \end{array} \right]

 \implies \: A B = \left[  \begin {array}{c} 8+ 0 +   2\end{array} \right] \\

 \implies \: A B = \left[  \begin {array}{c} 10 \end{array} \right] \\

Now,

A^{ \prime}  =  \left[  \begin {array}{r} 4 &0 & - 1 \end{array} \right] \:  \:  \: B^{ \prime}  =   \left[  \begin {array}{c} 2 &3 & - 2 \end{array} \right]

Now,

B^{ \prime} A^{ \prime}   =   \left[  \begin {array}{c} 2 &3 & - 2 \end{array} \right]\left[  \begin {array}{r} 4 &0 & - 1 \end{array} \right]

 \implies \: B^{ \prime} A^{ \prime}   =  \left[  \begin {array}{r} 4 \times 2  + 0 \times 3  +( - 1 )\times ( - 2) \end{array} \right] \\

 \implies \: B^{ \prime} A^{ \prime}   =  \left[  \begin {array}{r} 8  + 0   + 2\end{array} \right] \\

 \implies \: B^{ \prime} A^{ \prime}   =  \left[  \begin {array}{r}  10  \end{array} \right] \\

So,

 \implies (AB)^{ \prime}  =  B^{ \prime} A^{ \prime}  \\

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:A = \begin{gathered}\left[ \begin {array}{c} 4 \\0 \\ - 1 \end{array} \right] \end{gathered}

and

\rm :\longmapsto\:B = \begin{gathered} \left[ \begin {array}{r} 2 &3 & - 2 \end{array} \right]\end{gathered}

Consider,

\rm :\longmapsto\:AB

\rm \:  =  \: \begin{gathered}\left[ \begin {array}{c} 4 \\0 \\ - 1 \end{array} \right] \end{gathered} \times \begin{gathered} \left[ \begin {array}{r} 2 &3 & - 2 \end{array} \right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{ccc}8&12&8\\0&0&0\\ - 2& - 3&2\end{array}\right]\end{gathered}

Hence,

\rm :\longmapsto\: {(AB)}^{'}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}8&0& - 2\\12&0&-3\\8&0&2\end{array}\right]\end{gathered}

Now,

\rm :\longmapsto\:A = \begin{gathered}\left[ \begin {array}{c} 4 \\0 \\ - 1 \end{array} \right] \end{gathered}

\bf\implies \:A' = \begin{gathered} \left[ \begin {array}{r} 4 &0 & - 1 \end{array} \right]\end{gathered}

and

\rm :\longmapsto\:B = \begin{gathered} \left[ \begin {array}{r} 2 &3 & - 2 \end{array} \right]\end{gathered}

\bf\implies \:B' = \begin{gathered}\left[ \begin {array}{c} 2 \\3 \\ - 2 \end{array} \right] \end{gathered}

Now, Consider

\rm :\longmapsto\:B'A'

\rm \:  =  \: \begin{gathered}\left[ \begin {array}{c} 2 \\3 \\ - 2 \end{array} \right] \end{gathered} \times \begin{gathered} \left[ \begin {array}{r} 4 &0 & - 1 \end{array} \right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}8&0& - 2\\12&0&-3\\8&0&2\end{array}\right]\end{gathered}

So,

\bf\implies \: {(AB)}' = B'A'

Hence, Verified.

Additional Information :-

1. Symmetric Matrix : A square matrix A is said to be symmetric iff A' = A

2. Skew Symmetric Matrix : A square matrix A is said to be skew symmetric iff A' = - A

3. If A and B are symmetric matrix then AB + BA is symmetric.

4. If A and B are symmetric matrix then AB - BA is skew symmetric.

5. Null matrix of order n × n is always symmetric as well as skew symmetric.

6. The main diagonal elements of skew symmetric matrix are 0.

Similar questions