Math, asked by devanshigrover, 1 month ago

Please answer this the question is attached

Attachments:

Answers

Answered by ItzBrainlyLords
1

 \large \star \:  \sf \underline{ \underline{ \: given : }} \\  \\  \large \sf \: p(x) = 2 {x}^{2}  + 7x - 4 \\  \\

 \large \sf \: taking \:  \: value \:  \: for \:  \: x :  \\  \\  \large \tt  : \implies \: x = 2 \\  \\  \large \tt \: p(2) = 2( {2)}^{2}  + 7(2) - 4 \\  \\ \large \tt  : \implies p(2) = 2(4)  + 14 - 4 \\  \\  \large \tt  : \implies p(2) = 8 + 10 \\  \\  \large \tt  : \implies p(2) = 18  \not = 0\\  \\  \large \sf \therefore \:  \: x = 2 \:  \: is \:  \: not \:  \: a \:  \: zero \:  \: of \:  \: p(x) \\  \\

 \large \sf \: taking \:  \: value \:  \: for \:  \: x :  \\  \\  \large \tt  : \implies \: x =  \frac{1}{2}  \\  \\  \large \tt \: p \left( \frac{1}{2}  \right) = 2 {\left( \frac{1}{2}  \right)}^{2}  + 7\left( \frac{1}{2}  \right)- 4 \\  \\ \large \tt  : \implies p \left( \frac{1}{2}  \right)= 2  \left( \frac{1}{4}  \right)+ \left( \frac{7}{2}  \right) - 4 \\  \\  \large \tt  : \implies p\left( \frac{1}{2}  \right) =  \cancel2  \left( \frac{1}{ \cancel4 \:  \: 2}  \right)+ \left( \frac{7}{2}  \right) - 4 \\  \\  \large \tt  : \implies p \left( \frac{1}{2}  \right)=\left( \frac{1}{2}   +  \frac{7}{2} \right)  - 4\\  \\  \large \sf  : \implies \: p\left( \frac{1}{2}  \right) =  \frac{8}{2} - 4  \\  \\  \large \sf :    \implies \: p\left( \frac{1}{2}  \right)  =  \frac{8 - 8}{2}   \\  \\ \large \sf :    \implies \: p\left( \frac{1}{2}  \right)  =  \frac{0}{2}  \\  \\ \large \sf :    \implies \: p\left( \frac{1}{2}  \right)  =  0  \\  \\ \large \sf \therefore \:  \: x =  \frac{1}{2}  \:  \: is \:    \: a \:  \: zero \:  \: of \:  \: p(x) \\  \\

 \large \sf \: taking \:  \: value \:  \: for \:  \: x :  \\  \\  \large \tt  : \implies \: x =  \frac{ - 1}{2}  \\  \\  \large \tt \: p \left( \frac{ - 1}{2}  \right) = 2 {\left( \frac{ - 1}{2}  \right)}^{2}  + 7\left( \frac{ - 1}{2}  \right)- 4 \\  \\ \large \tt  : \implies p \left( \frac{ - 1}{2}  \right)= 2  \left( \frac{1}{4}  \right)+ \left( \frac{ - 7}{2}  \right) - 4 \\  \\  \large \tt  : \implies p\left( \frac{ - 1}{2}  \right) =  \cancel2  \left( \frac{1}{ \cancel4 \:  \: 2}  \right)+ \left( \frac{ - 7}{2}  \right) - 4 \\  \\  \large \tt  : \implies p \left( \frac{ - 1}{2}  \right)=\left( \frac{1}{2}   -   \frac{7}{2} \right)  - 4\\  \\  \large \sf  : \implies \: p\left( \frac{ - 1}{2}  \right) =  \frac{ - 6}{2} - 4  \\  \\  \large \sf :    \implies \: p\left( \frac{ - 1}{2}  \right)  =  \frac{ - 6 - 8}{2} \\  \\ \large \sf :    \implies \: p\left( \frac{ - 1}{2}  \right)  =  \frac{ - 14}{2}  \\  \\ \large \sf :    \implies \: p\left( \frac{ - 1}{2}  \right)  =  \frac{ -  \cancel{1 4} \:  \: 7}{ \cancel2}    \\  \\ \large \sf:  \implies \: p\left( \frac{ - 1}{2}  \right)  =  - 7 \\  \\ \large \sf \therefore \:  \: x =  \left( \frac{ - 1}{2}  \right)\:  \: is \:  \: not \:  \: a \:  \: zero \:  \: of \:  \: p(x)

Similar questions