Math, asked by grahamdon2000, 1 month ago

Please answer this trig question.

Attachments:

Answers

Answered by shadowsabers03
9

Given,

\small\text{$\longrightarrow\tan\left(x+\dfrac{\pi}{12}\right)\cot\left(x-\dfrac{\pi}{12}\right)=\lambda$}

Since \small\text{$\tan x=\dfrac{\sin x}{\cos x}$} and \small\text{$\cot x=\dfrac{\cos x}{\sin x},$}

\small\text{$\longrightarrow\dfrac{\sin\left(x+\dfrac{\pi}{12}\right)}{\cos\left(x+\dfrac{\pi}{12}\right)}\cdot\dfrac{\cos\left(x-\dfrac{\pi}{12}\right)}{\sin\left(x-\dfrac{\pi}{12}\right)}=\lambda$}

\small\text{$\longrightarrow\dfrac{\sin\left(x+\dfrac{\pi}{12}\right)\cos\left(x-\dfrac{\pi}{12}\right)}{\cos\left(x+\dfrac{\pi}{12}\right)\sin\left(x-\dfrac{\pi}{12}\right)}=\lambda$}

Multiplying both numerator and denominator of the fraction by 2,

\small\text{$\longrightarrow\dfrac{2\sin\left(x+\dfrac{\pi}{12}\right)\cos\left(x-\dfrac{\pi}{12}\right)}{2\cos\left(x+\dfrac{\pi}{12}\right)\sin\left(x-\dfrac{\pi}{12}\right)}=\lambda\quad\quad\dots(1)$}

We have, by product - to - sum formula,

  • \small\text{$2\sin(A+B)\cos(A-B)=\sin(2A)+\sin(2B)$}
  • \small\text{$2\cos(A+B)\sin(A-B)=\sin(2A)-\sin(2B)$}

Taking \small\text{$A=x$} and \small\text{$B=\dfrac{\pi}{12},$}

  • \small\text{$2\sin\left(x+\dfrac{\pi}{12}\right)\cos\left(x+\dfrac{\pi}{12}\right)=\sin(2x)+\sin\left(\dfrac{\pi}{6}\right)$}
  • \small\text{$2\cos\left(x+\dfrac{\pi}{12}\right)\sin\left(x+\dfrac{\pi}{12}\right)=\sin(2x)-\sin\left(\dfrac{\pi}{6}\right)$}

Then (1) becomes,

\small\text{$\longrightarrow\dfrac{\sin\left(2x\right)+\sin\left(\dfrac{\pi}{6}\right)}{\sin\left(2x\right)-\sin\left(\dfrac{\pi}{6}\right)}=\lambda$}

Since \small\text{$\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2},$}

\small\text{$\longrightarrow\dfrac{\sin\left(2x\right)+\dfrac{1}{2}}{\sin\left(2x\right)-\dfrac{1}{2}}=\dfrac{\lambda}{1}$}

We have the rule of componendo and dividendo,

  • \small\text{$\dfrac{a}{b}=\dfrac{c}{d}\quad\iff\quad\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}$}

Then,

\small\text{$\longrightarrow\dfrac{\left(\sin\left(2x\right)+\dfrac{1}{2}\right)+\left(\sin\left(2x\right)-\dfrac{1}{2}\right)}{\left(\sin\left(2x\right)+\dfrac{1}{2}\right)-\left(\sin\left(2x\right)-\dfrac{1}{2}\right)}=\dfrac{\lambda+1}{\lambda-1}$}

\small\text{$\longrightarrow2\sin(2x)=\dfrac{\lambda+1}{\lambda-1}$}

\small\text{$\longrightarrow\underline{\underline{\sin(2x)=\dfrac{\lambda+1}{2(\lambda-1)}}}$}

Hence Proved!

Similar questions