Math, asked by krnofhcroj, 5 hours ago

please answer this. will be marked branliest please answer correct and fast pleasepleasepleasepleasr

Attachments:

Answers

Answered by kjlch1102
1

Answer:

See the above answer

Step-by-step explanation:

Mark me as Brainliest

Attachments:
Answered by mathdude500
5

Given Question :-

Solve the simultaneous linear equations :-

2x + 3y = xy

and

3x + 4y = 2xy

 \purple{\large\underline{\sf{Solution-}}}

Given pair of equations are

\rm :\longmapsto\:2x + 3y = xy

and

\rm :\longmapsto\:3x + 4y = 2xy

Now, here if we put x = 0 in either of the two equations, we get y = 0

So, one solution is x = 0 and y = 0.

To find the other solution,

Let assume that x and y are non - zero.

So,

Divide both equations by xy, we get

\rm :\longmapsto\:\dfrac{2}{y}  + \dfrac{3}{x}  = 1 -  -  - (1)

and

\rm :\longmapsto\:\dfrac{3}{y}  + \dfrac{4}{x}  = 2 -  -  - (2)

Now, multiply equation (1) by 3 and equation (2) by 2, we get

\rm :\longmapsto\:\dfrac{6}{y}  + \dfrac{9}{x}  = 3 -  -  - (3)

and

\rm :\longmapsto\:\dfrac{6}{y}  + \dfrac{8}{x}  = 4 -  -  - (4)

On Subtracting equation (4) from equation (3) we get

\rm :\longmapsto\:\dfrac{1}{x}  =  - 1

\bf\implies \:x  \: =  \:  -  \: 1

On substituting x = - 1, in equation (1) we get

\rm :\longmapsto\:\dfrac{2}{y}   - 3  = 1

\rm :\longmapsto\:\dfrac{2}{y} = 1  + 3

\rm :\longmapsto\:\dfrac{2}{y} = 4

\rm :\longmapsto\:\dfrac{2}{4} = y

\bf\implies \:y = \dfrac{1}{2}

 \red{\:\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: So-\begin{cases} &\sf{x  \: =  -  \: 1}  \\ \\ &\sf{y \:  =  \:  \dfrac{1}{2} } \end{cases}\end{gathered}\end{gathered}}

Verification :-

Consider equation

\rm :\longmapsto\:2x + 3y = xy

On substituting the values of x and y, we get

\rm :\longmapsto\:2( - 1) + 3\bigg[\dfrac{1}{2} \bigg] =  - (1)\bigg[\dfrac{1}{2} \bigg]

\rm :\longmapsto\: - 2 + \dfrac{3}{2}  =  - \dfrac{1}{2}

\rm :\longmapsto\: \dfrac{ - 4 + 3}{2}  =  - \dfrac{1}{2}

\bf :\longmapsto\:  - \dfrac{1}{2}  =  - \dfrac{1}{2}

Hence, Verified

Hence, Solution of equations are

 \red{\:\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: So-\begin{cases} &\sf{x  \: =  -  \: 1}  \\ \\ &\sf{y \:  =  \:  \dfrac{1}{2} } \end{cases}\end{gathered}\end{gathered}}

and

 \red{\:\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: So-\begin{cases} &\sf{x  \: = \: 0}  \\ \\ &\sf{y \:  =  \:  0 } \end{cases}\end{gathered}\end{gathered}}

Similar questions